|本期目录/Table of Contents|

[1]王 琳,刘永健,孙立鹏.钢管混凝土桥塔加劲钢壁板PBL连接件屈曲拔出力研究[J].建筑科学与工程学报,2025,42(03):126-134.[doi:10.19815/j.jace.2024.11021]
 WANG Lin,LIU Yongjian,SUN Lipeng.Study on buckling pull-out force of PBL connectors in stiffened steel plate of concrete-filled steel tube bridge pylons[J].Journal of Architecture and Civil Engineering,2025,42(03):126-134.[doi:10.19815/j.jace.2024.11021]
点击复制

钢管混凝土桥塔加劲钢壁板PBL连接件屈曲拔出力研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年03期
页码:
126-134
栏目:
桥隧工程
出版日期:
2025-05-30

文章信息/Info

Title:
Study on buckling pull-out force of PBL connectors in stiffened steel plate of concrete-filled steel tube bridge pylons
文章编号:
1673-2049(2025)03-0126-09
作者:
王 琳1,刘永健1,2,3,孙立鹏4
(1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 公路大型结构安全教育部工程中心,陕西 西安 710064; 3. 重庆大学 土木工程学院,重庆 400044; 4. 北京工业大学 桥梁工程安全与韧性全国重点实验室,北京 100124)
Author(s):
WANG Lin1, LIU Yongjian1,2,3, SUN Lipeng4
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Research Center of Highway Large Structure Engineering on Safety of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China; 3. School of Civil Engineering, Chongqing University, Chongqing 400044, China; 4. National Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing 100124, China)
关键词:
钢管混凝土桥塔 PBL连接件 加劲钢壁板 有限元分析 屈曲拔出力
Keywords:
concrete-filled steel tube pylon PBL connector stiffened steel plate finite element analysis buckling pull-out force
分类号:
U443
DOI:
10.19815/j.jace.2024.11021
文献标志码:
A
摘要:
为探究钢管混凝土桥塔中PBL连接件屈曲拔出力的大小及其分布规律,采用有限元法分析了混凝土强度等级、开孔钢板厚度、开孔直径、肋间宽厚比和几何初始缺陷等因素的影响。以PBL连接件在弹性阶段所受的最大屈曲拔出力为设计基础,提出了加劲钢壁板的PBL连接件屈曲拔出力计算公式及其抗拔验算方法。研究结果表明:在弹性阶段,PBL连接件在钢壁板局部屈曲作用下的屈曲拔出力随着肋间宽厚比和几何初始缺陷的增加显著增大; 当肋间宽厚比从20增至35时,屈曲拔出力增加32.5%; 当几何初始缺陷从钢壁板单元短边长度的1/500减小到1/2 000时,屈曲拔出力减小了69.4%; 混凝土强度、开孔钢板圆孔直径及开孔钢板加劲肋厚度对屈曲拔出力的影响较小; 当设计的PBL加劲钢壁板各项参数在常用工程应用参数范围内时,PBL连接件在弹性抗拔刚度下的屈曲拔出力均远小于计算所得抗拔承载力,不会发生拔出破坏,因此可不进行抗拔承载力验算。
Abstract:
In order to investigate the magnitude and distribution pattern of the pull-out force of PBL connectors in concrete-filled steel tube bridge pylons, the effects of concrete strength grade, perforated steel plate thickness, hole diameter, rib width-to-thickness ratio, and initial geometric imperfections were analyzed by finite element method. Based on the maximum pull-out force on PBL connectors in the elastic stage, a calculation formula and verification method for the pull-out force of PBL connectors in stiffened steel plates was proposed. The study results show that, in the elastic stage, the pull-out force on PBL connectors under local buckling of the steel plate significantly increases with the rib width-to-thickness ratio and initial imperfections. When the rib width-to-thickness ratio increases from 20 to 35, the pull-out force increases by 32.5%. when the initial imperfections is reduced from 1/500 to 1/2 000 of the short-side length of the steel wall panel, the pull-out force decreases by 69.4%. The influence of concrete strength, perforated steel plate hole diameter, and stiffened rib thickness on the pull-out force is relatively small. When the design parameters of the PBL stiffened steel plates are within the commonly used engineering application range, the pull-out force on the PBL connectors under elastic pull-out stiffness is much smaller than the calculated pull-out bearing capacity, thus eliminating the need for pull-out bearing capacity verification.

参考文献/References:

[1] 王智勇.强腐作用下钢-混组合梁中PBL剪力连接件力学性能研究[D].西安:西安工业大学,2023.
WANG Zhiyong. Study on mechanical properties of PBL shear connectors in steel-concrete composite beams under strong corrosion[D]. Xi'an: Xi'an Technological University, 2023.
[2]SUN L P, LIU Y J, WANG H T, et al. Axial compressive behavior of PBL-stiffened double-skin composite walls considering local buckling: experimental and theoretical investigation[J]. Engineering Structures, 2023, 289: 116329.
[3]刘永健,孙立鹏,周绪红,等.钢管混凝土桥塔工程应用与研究进展[J].中国公路学报,2022,35(6):1-21.
LIU Yongjian, SUN Lipeng, ZHOU Xuhong, et al. Progress in the application of research on concrete-filled steel tubular bridge towers[J]. China Journal of Highway and Transport, 2022, 35(6): 1-21.
[4]蒲北辰,周绪红,刘永健,等.钢管混凝土组合桁梁桥近、远场抗震性能[J].建筑科学与工程学报,2018,35(5):118-127.
PU Beichen, ZHOU Xuhong, LIU Yongjian, et al. Anti-seismic performance of CFST composite trussed bridge caused by near-field and far-field earthquakes[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 118-127.
[5]祝 兵,赵雨佳.PBL剪力连接件抗力分项系数计算研究[J].世界桥梁,2022,50(3):74-79.
ZHU Bing, ZHAO Yujia. Research on resistance partial coefficient of PBL shear connectors[J]. World Bridges, 2022, 50(3): 74-79.
[6]吴 杭,薛 辉,王志宇.CFRP加固PBL剪力连接件的抗拉拔性能试验[J].四川建筑科学研究,2018,44(2):47-51.
WU Hang, XUE Hui, WANG Zhiyu. Experimental research on pull out behavior of PBL shear connector reinforced by CFRP[J]. Sichuan Building Science, 2018, 44(2): 47-51.
[7]孙立鹏.PBL加劲型薄壁钢管混凝土桥塔的计算理论与设计方法研究[D].西安:长安大学,2023.
SUN Lipeng. Study on calculation theory and design method of PBL stiffened thin-walled concrete filled steel tubular bridge tower[D]. Xi'an: Chang'an University, 2023.
[8]LIU Y Q, XIN H H, LIU Y Q. Experimental and analytical study on tensile performance of perfobond connector in bridge engineering application[J]. Structures, 2021, 29: 714-729.
[9]ZHENG S J, LIU Y Q, LIU Y Q, et al. Experimental and parametric study on the pull-out resistance of a notched perfobond shear connector[J]. Applied Sciences, 2019, 9(4): 764.
[10]薛 辉,王志宇,王清远,等.PBL与PZ型剪力连接件抗拉拔性能试验[J].四川大学学报(工程科学版),2016,48(6):68-76.
XUE Hui, WANG Zhiyu, WANG Qingyuan, et al. Experimental research on pull-out behavior of PBL shear connector and puzzle shaped composite dowel[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(6): 68-76.
[11]KIM Y H, KANG J Y, KOO H B, et al. Pull-out resistance capacity of a new perfobond shear connector for steel pile cap strengthening[J]. Advances in Materials Science and Engineering, 2016, 2016(1): 1374689.
[12]ZHU Y Y, NIE X, FAN J S, et al. Experimental and analytical investigation on pull-out performance of multihole thin-rib perfobond connectors[J]. Journal of Bridge Engineering, 2019, 24(5): 04019037.
[13]WANG Z. Study on mechanical property and load-bearing mechanism embedded perfobond rib shear connectors[D]. Nanjing: Southwest Jiaotong University, 2011.
[14]AHN J H, LEE C G, WON J H, et al. Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement[J]. Journal of Constructional Steel Research, 2010, 66(10): 1295-1307.
[15]CHO J R, PARK S Y, CHO K, et al. Pull-out test and discrete spring model of fibre-reinforced polymer perfobond rib shear connector[J]. Canadian Journal of Civil Engineering, 2012, 39(12): 1311-1320.
[16]NGUYEN M H, HIRANO Y, NAKAJIMA A, et al. Experimental evaluation of the shear capacity of perfobond strips with steel fiber-reinforced mortar in narrow joint structures[J]. Structures, 2020, 28: 1173-1186.
[17]SUN L P, LIU Y J, WANG H T, et al. Tensile stiffness of perfobond rib connectors in steel-concrete composite pylon of bridges[J]. Engineering Structures, 2023, 284: 115931.
[18]王海涛,刘永健,孙立鹏.基于壁板屈曲后强度的矩形钢管混凝土偏压承载力计算方法[J].建筑科学与工程学报,2022,39(5):41-52.
WANG Haitao, LIU Yongjian, SUN Lipeng. Calculation method of eccentric bearing capacity of RCFST based on post-buckling strength of panels[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 41-52.
[19]钢板剪力墙技术规程:JGJ/T 380—2015[S].北京:中国建筑工业出版社,2016.
Technical specification for steel plate shear walls: JGJ/T 380—2015[S]. Beijing: China Architecture & Building Press, 2016.
[20]孙立鹏,刘永健.矩形钢管混凝土壁板的屈曲后强度[J].建筑结构学报,2022,43(10):259-273.
SUN Lipeng, LIU Yongjian. Post-buckling strength of rectangular concrete-filled steel tube panels[J]. Journal of Building Structures, 2022, 43(10): 259-273.
[21]公路钢结构桥梁制造和安装施工规范:JTG/T 3651—2022[S].北京:人民交通出版社,2022.
Specification for Manufacture and Installation of Highway Steel Bridge: JTG/T 3651—2022[S]. Beijing: China Communications Press, 2022.
[22]卢 迅,刘永健,孙立鹏,等.初始缺陷对矩形钢管混凝土柱壁板屈曲后强度的影响[J].建筑科学与工程学报,2020,37(5):170-181.
LU Xun, LIU Yongjian, SUN Lipeng, et al. Effect of initial imperfection on post-buckling strength of concrete-filled rectangular steel tubular column slab[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 170-181.
[23]陈玲珠,蒋首超,张 洁.栓钉剪力连接件的承载能力研究综述[J].钢结构,2010,25(9):5-10.
CHEN Lingzhu, JIANG Shouchao, ZHANG Jie. The review on load-bearing capacity of stud shear connectors[J]. Steel Construction, 2010, 25(9): 5-10.
[24]封博文,刘永健,彭元诚,等.施工误差对剪力钉工作性能的影响[J].建筑科学与工程学报,2018,35(1):119-126.
FENG Bowen, LIU Yongjian, PENG Yuancheng, et al. Influence of construction error on working performance of shear stud[J]. Journal of Architecture and Civil Engineering, 2018, 35(1): 119-126.
[25]聂建国,王宇航.钢-混凝土组合梁疲劳性能研究综述[J].工程力学,2012,29(6):1-11.
NIE Jianguo, WANG Yuhang. Research status on fatigue behavior of steel-concrete composite beams[J]. Engineering Mechanics, 2012, 29(6): 1-11.
[26]SUN L P, LIU Y J, SHI F R, et al. Pull-out performance of perfobond rib connectors in steel high-strength concrete composite bridge pylons[J]. Construction and Building Materials, 2023, 366: 130205.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-11-05
基金项目:重庆市在渝院士牵头科技创新引导专项(CSTB2023YSZX-JSX0004); 国家资助博士后研究人员计划项目(GZC20230190)
作者简介:刘永健(1966-),男,工学博士,教授,博士生导师,E-mail:liuyongjian@chd.edu.cn。
Author resume: LIU Yongjian(1966-), male, PhD, Professor, E-mail: liuyongjian@chd.edu.cn.
更新日期/Last Update: 2025-06-01