|本期目录/Table of Contents|

[1]张信贵,田应志,韩 伟,等.含砾黏土地层钢筋笼扩大头锚杆承载特性研究[J].建筑科学与工程学报,2025,42(03):172-182.[doi:10.19815/j.jace.2023.09048]
 ZHANG Xingui,TIAN Yingzhi,HAN Wei,et al.Study on bearing characteristics of reinforced cage expanded head anchor rods in gravelly clay strata[J].Journal of Architecture and Civil Engineering,2025,42(03):172-182.[doi:10.19815/j.jace.2023.09048]
点击复制

含砾黏土地层钢筋笼扩大头锚杆承载特性研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年03期
页码:
172-182
栏目:
岩土工程
出版日期:
2025-05-30

文章信息/Info

Title:
Study on bearing characteristics of reinforced cage expanded head anchor rods in gravelly clay strata
文章编号:
1673-2049(2025)03-0172-11
作者:
张信贵1,田应志1,韩 伟2,张懿丹2,潘政宇3
(1. 广西大学 土木建筑工程学院,广西 南宁 530004; 2. 广西大学设计院有限公司,广西 南宁 530007; 3. 广西交科集团有限公司,广西 南宁 530007)
Author(s):
ZHANG Xingui1, TIAN Yingzhi1, HAN Wei2, ZHANG Yidan2, PAN Zhengyu3
(1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China; 2. Guangxi University Design Institute Co., Ltd., Nanning 530007, Guangxi, China; 3. Guangxi Transportation Science and Technology Group Co., Ltd., Nanning 530007, Guangxi, China)
关键词:
钢筋笼扩大头锚杆 含砾黏土 承载特性 侧压力系数 塑性变形
Keywords:
reinforced cage expanded head anchor rod gravelly clay bearing characteristic lateral pressure coefficient plastic deformation
分类号:
TU473
DOI:
10.19815/j.jace.2023.09048
文献标志码:
A
摘要:
为了研究钢筋笼扩大头锚杆在含砾黏土地层的承载性能,根据6根不同扩大头尺寸、扩大头长度和总长度的锚杆现场破坏试验确定抗拔力极限值的计算方法; 根据破坏试验设计工程项目钢筋笼扩大头抗浮锚杆尺寸,进行6根相同设计参数的钢筋笼扩大头抗浮锚杆验收试验; 建立三维有限元模型,通过与现场试验结果进行荷载-位移曲线和抗拔力极限值双元参数拟合对比,验证模型的合理性,研究钢筋笼扩大头锚杆荷载传递规律、荷载分担比,分析其失效破坏机理。结果表明:相较于等直径锚杆,钢筋笼扩大头锚杆承载力、变形控制能力提升显著,含砾黏土地层非预应力钢筋笼扩大头锚杆侧压力系数ξ取0.8Ka(Ka为扩大头锚杆前端土体主动土压力系数)较为合理; 含砾黏土地层钢筋笼扩大头锚杆塑性变形占比较大,拉拔荷载达到0.6倍抗拔力极限值时,锚杆塑性位移占总位移比值达到49.81%~55.01%; 普通段侧摩阻力、扩大头端阻力、扩大段侧摩阻力分别占锚杆极限承载力的44.2%、12.2%、43.6%; 扩大头锚杆侧摩阻力沿深度方向整体呈增大-减小-增大-减小的趋势; 锚杆顶部和扩大头顶部土体最早出现塑性区,随着荷载增大,塑性区沿轴向不断发展直至贯通,锚杆失效。
Abstract:
In order to investigate the bearing performance of reinforced cage expanded head anchor rods in gravelly clay strata, the field destructive tests were conducted on six anchor rods with different expanded head sizes, expanded head lengths and total lengths to determine the calculation method of the ultimate pullout force. Based on the results of the destructive tests, the size of reinforced cage expanded head anti-floating anchor rod of engineering project was designed, and the acceptance tests were carried out on six reinforced cage expanded head anti-floating anchor rods with the same design parameters. A three-dimensional finite element model was established, and the rationality of the model was verified by fitting and comparing the load-displacement curve and the ultimate pullout force of the model with the field test results. The load transfer mechanism and load sharing ratio of reinforced cage expanded head anchor rods were studied and the failure mechanisms were analyzed. The results show that compared to anchor rods with the same diameter, the reinforced cage expanded head anchor rods exhibit significantly improved bearing capacity and deformation control ability. For non-prestressed reinforced cage expanded head anchor rods in gravelly clay strata, a lateral pressure coefficient of 0.8Ka(Ka is the active soil pressure coefficient of soil at the front end of expanded head anchor rod)is found to be reasonable. In gravelly clay strata, the plastic deformation of reinforced cage expanded head anchor rods account for a significant proportion, with the ratio of plastic displacement to total displacement reaching 49.81% to 55.01% when the tensile load reached 0.6 times of the ultimate pullout force. The friction resistance in the ordinary section, end resistance of the expanded head and friction resistance in the expanded section account for 44.2%, 12.2%, 43.6% of the anchor rod's ultimate bearing capacity, respectively. The lateral friction resistance of expanded head anchor rod shows an overall trend of increasing-decreasing-increasing-decreasing along the depth direction. The plastic zone first appears in the soil at the top of anchor rod and expanded head. As the load increases, the plastic zone continues to develop along the axial direction until it penetrates, and the anchor rod fails.

参考文献/References:

[1] 梅国雄,徐 敏,宋林辉,等.新型伞状抗拔锚现场试验研究[J].岩土工程学报,2010,32(6):892-896.
MEI Guoxiong, XU Min, SONG Linhui, et al. In-situ tests on new umbrella-shaped anti-float anchors[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 892-896.
[2]彭文祥,曹佳文.充气锚杆的研究现状及展望[J].科技导报,2010,28(5):111-115.
PENG Wenxiang, CAO Jiawen.A review of studies on inflatable anchor[J]. Science & Technology Review, 2010, 28(5): 111-115.
[3]WANG L C, XU M, PENG W X, et al. Behavior of bladder-type inflatable anchors in sand: physical modeling[J]. Science Progress, 2021, 104(2): 852-868.
[4]PENG W X, XU M K, CHEN Y F, et al. The influences of bladder properties on the working performance of the multibladder-type inflatable anchor[J]. Advances in Civil Engineering, 2021, 2021(1): 8018825.
[5]刘 钟,郭 钢,张 义,等.囊式扩体锚杆施工技术与工程应用[J].岩土工程学报,2014,36(增2):205-211.
LIU Zhong, GUO Gang, ZHANG Yi, et al. Construction technology and engineering applications of capsule-type under-reamed ground anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 205-211.
[6]刘 钟,张楚福,张 义,等.囊式扩体锚杆在宁波地区的现场试验研究[J].岩土力学,2018,39(增2):295-301.
LIU Zhong, ZHANG Chufu, ZHANG Yi, et al. Field test study of under-reamed ground anchorage with capsule in Ningbo area[J]. Rock and Soil Mechanics, 2018, 39(S2): 295-301.
[7]张敬一.膨胀土地区承压扩体锚杆现场试验及应用研究[J].岩石力学与工程学报,2018,37(增2):4367-4374.
ZHANG Jingyi. On-field test and application study of under-reamed compression anchors in expansive soil regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4367-4374.
[8]张敬一,蒋志军.承压扩体锚杆承载-变形特性现场试验[J].地下空间与工程学报,2018,14(增2):554-558.
ZHANG Jingyi, JIANG Zhijun. On-field testing bearing and deformation characteristics of under-reamed compression anchors[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(S2): 554-558.
[9]张 晨,周 峰,王旭东,等.扩底抗浮锚杆的抗拔承载特性试验研究[J].地下空间与工程学报,2021,17(6):1888-1893.
ZHANG Chen, ZHOU Feng, WANG Xudong, et al. Field tests and research on uplift capacity of expanded anchor[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1888-1893.
[10]马龙祥,余云翔,杜 文,等.淤泥质软土地层中扩大头锚索的极限抗拔承载力研究[J].建筑科学,2023,39(3):81-91.
MA Longxiang, YU Yunxiang, DU Wen, et al. Study on the ultimate uplift bearing capacity of expanded anchor cable in muddy soft soils layer[J]. Building Science, 2023, 39(3): 81-91.
[11]曾庆义,杨晓阳,杨昌亚.扩大头锚杆的力学机制和计算方法[J].岩土力学,2010,31(5):1359-1367.
ZENG Qingyi, YANG Xiaoyang, YANG Changya. Mechanical mechanism and calculation method of bit expanded anchor rods[J]. Rock and Soil Mechanics, 2010, 31(5): 1359-1367.
[12]彭文祥,张 旭,曹佳文.充气锚杆极限承载力计算方法[J].岩土力学,2013,34(6):1696-1702.
PENG Wenxiang, ZHANG Xu, CAO Jiawen. Calculation method for ultimate bearing capacity of inflatable anchor[J]. Rock and Soil Mechanics, 2013, 34(6): 1696-1702.
[13]王 哲,王乔坎,马少俊,等.扩大头可回收预应力锚索极限抗拔力计算方法研究[J].岩土力学,2018,39(增2):202-208.
WANG Zhe, WANG Qiaokan, MA Shaojun, et al. A method for calculating ultimate pullout force of recoverable under-reamed prestressed anchor cable[J]. Rock and Soil Mechanics, 2018, 39(S2): 202-208.
[14]LIU J Y, LIU M L, ZHU Z D. Sand deformation around an uplift plate anchor[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 728-737.
[15]GUO G, LIU Z, TANG A P, et al. Model test research on bearing mechanism of underreamed ground anchor in sand[J]. Mathematical Problems in Engineering, 2018, 2018(1): 9746438.
[16]HANNA A, FORIERO A, AYADAT T. Pullout capacity of inclined shallow single anchor plate in sand[J]. Indian Geotechnical Journal, 2015, 45(1): 110-120.
[17]YU S B, HAMBLETON J P, SLOAN S W. Analysis of inclined strip anchors in sand based on the block set mechanism[J]. Applied Mechanics and Materials, 2014, 553: 422-427.
[18]郭 钢,刘 钟,邓益兵,等.砂土中扩体锚杆承载特性模型试验研究[J].岩土力学,2012,33(12):3645-3652.
GUO Gang, LIU Zhong, DENG Yibing, et al. Model test research on bearing capacity characteristics of underreamed ground anchor in sand[J]. Rock and Soil Mechanics, 2012, 33(12): 3645-3652.
[19]刘剑平,张慧乐,王述红,等.扩体锚杆承载特性的模型试验研究[J].地下空间与工程学报,2013,9(4):749-757.
LIU Jianping, ZHANG Huile, WANG Shuhong, et al. Model test research on bearing capacity of underreamed ground anchor[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(4): 749-757.
[20]任德斌,常思萌,王国业.扩大头锚杆结构参数优化研究[J].沈阳建筑大学学报(自然科学版),2016,32(3):466-475.
REN Debin, CHANG Simeng, WANG Guoye. Optimization study on structural parameters of the bit expanded anchor[J]. Journal of Shenyang Jianzhu University(Natural Science), 2016, 32(3): 466-475.
[21]ZHANG S F, WANG Y S, LI C, et al. Study on the style design and anchoring mechanism of enlarged head anchors[J]. Sustainability, 2023, 15(11): 8645.
[22]董 捷,陶春晨,张国祥,等.变截面底端扩体型锚杆在粉质黏土中的承载特性模型试验研究[J].铁道建筑,2022,62(7):127-132.
DONG Jie, TAO Chunchen, ZHANG Guoxiang, et al. Experimental study on bearing characteristics of variable cross-section bottom-end-expanded bolt in silty clay[J].Railway Engineering, 2022, 62(7): 127-132.
[23]江建洪,曾庆义,马 健.考虑倾角影响的扩大头锚杆极限抗拔力[J].哈尔滨工业大学学报,2022,54(2):154-161.
JIANG Jianhong, ZENG Qingyi, MA Jian. Ultimate pullout capacity of end-expanded ground anchors considering inclined angle effect[J]. Journal of Harbin Institute of Technology, 2022, 54(2): 154-161.
[24]王 哲,陆柯颖,王乔坎,等.水平荷载作用下压力型扩大头锚杆承载特性试验研究[J].岩土工程学报,2020,42(增1):193-197.
WANG Zhe, LU Keying, WANG Qiaokan, et al. Experimental study on failure characteristics of pressured under-reamed anchors under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 193-197.
[25]夏元友,陈 晨,NI Qing.基于透明土的4种锚杆拔出对比模型试验[J].岩土工程学报,2017,39(3):399-407.
XIA Yuanyou, CHEN Chen, NI Qing. Comparative modelling of pull-out process of four different anchorages by using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 399-407.
[26]蔡 强,李宝幸,宋 军.扩大头锚杆研究进展综述[J].科学技术与工程,2022,22(25):10819-10828.
CAI Qiang, LI Baoxing, SONG Jun. Advance on the bit expanded anchor[J]. Science Technology and Engineering, 2022, 22(25): 10819-10828.
[27]曹海莹,穆壮尉,郑凯林,等.内置锚盘扩大头锚杆承载特性模型试验研究[J].公路交通科技,2023,40(3):25-32.
CAO Haiying, MU Zhuangwei, ZHENG Kailin, et al. Experimental study on model of bearing characteristics of under-reamed anchor with built-in anchor plate[J]. Journal of Highway and Transportation Research and Development, 2023, 40(3): 25-32.
[28]韩 磊,曹 鹏,喻豪俊,等.含砾黏性土力学特性分析[J].西安理工大学学报,2018,34(4):502-509.
HAN Lei, CAO Peng, YU Haojun, et al. Analysis of mechanical properties of viscous slip soils containing gravels[J]. Journal of Xi'an University of Technology, 2018, 34(4): 502-509.
[29]TABARI M K, GHALESARI A T, CHOOBBASTI A J, et al. Large-scale experimental investigation of strength properties of composite clay[J]. Geotechnical and Geological Engineering, 2019, 37(6): 5061-5075.
[30]尤志嘉.土层锚固体应力分布规律与失效机理的细观力学研究[D].青岛:山东科技大学,2018.
YOU Zhijia. Meso mechanical study on stress distribution and failure mechanism of soil anchorage[D]. Qingdao: Shandong University of Science and Technology, 2018.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-09-11
基金项目:广西重点研发计划项目(桂科AB22035011); 中化地质矿山总局资助项目(ZHTD202101)
作者简介:张信贵(1965-),男,工学博士,教授,博士生导师,E-mail:xgzhangchn@foxmail.com。
Author resume: ZHANG Xingui(1965-), male, PhD, professor, E-mail: xgzhangchn@foxmail.com.
更新日期/Last Update: 2025-06-01