[1] 张鹄志,尹 斌,陈怡君,等.基于拓扑优化的钢筋混凝土构件设计方法研究综述[J].武汉大学学报(工学版),2022,55(5):462-473.
ZHANG Huzhi, YIN Bin, CHEN Yijun, et al. A review of design methods for reinforced concrete members based on topology optimization[J]. Engineering Journal of Wuhan University, 2022, 55(5): 462-473.
[2]SEBAIBI N, BOUTOUIL M. Reducing energy consumption of prefabricated building elements and lowering the environmental impact of concrete[J]. Engineering Structures, 2020, 213: 110594.
[3]JIANG W P, LUO L R, WU Z Z, et al. An investigation of the effectiveness of prefabrication incentive policies in China[J]. Sustainability, 2019, 11(19): 5149.
[4]郑山锁,杜宜阳,梁泽田,等.钢筋混凝土板柱节点冲切性能研究进展[J].建筑科学与工程学报,2024,41(1):52-68.
ZHENG Shansuo, DU Yiyang, LIANG Zetian, et al. Research progress of punching shear performance of reinforced concrete slab-column joints[J]. Journal of Architecture and Civil Engineering, 2024, 41(1): 52-68.
[5]仓大健.基于机器视觉的钢筋绑扎点定位方法研究[D].福州:福建工程学院,2023.
CANG Dajian. Research on positioning method of steel binding point based on machine vision[D]. Fuzhou: Fujian University of Technology, 2023.
[6]崔景研.图像驱动的PC生产过程钢筋绑扎建模与控制系统研究[D].沈阳:沈阳工业大学,2022.
CUI Jingyan. Research on modeling and control system of steel bar banding in PC production process driven by image[D]. Shenyang: Shenyang University of Technology, 2022.
[7]PARASCHO S. Construction robotics: from automation to collaboration[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6: 183-204.
[8]SHI H T, LI R R, BAI X T, et al. A review for control theory and condition monitoring on construction robots[J]. Journal of Field Robotics, 2023, 40(4): 934-954.
[9]陈 翀,李 星,邱志强,等.建筑施工机器人研究进展[J].建筑科学与工程学报,2022,39(4):58-70.
CHEN Chong, LI Xing, QIU Zhiqiang, et al. Research progress of construction robots[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 58-70.
[10]KEATING S J, LELAND J C, CAI L, et al. Toward site-specific and self-sufficient robotic fabrication on architectural scales[J].Science Robotics, 2017, 2(5): eaam8986.
[11]陈一铭,白玉星,朱颖杰,等.智能建造背景下机械臂自动化绑扎钢筋笼研究[J].中国高新科技,2023(13):30-32,42.
CHEN Yiming, BAI Yuxing, ZHU Yingjie, et al. Research on automatic binding of reinforcement cage by mechanical arm under background of intelligent construction[J]. China High and New Technology, 2023(13): 30-32, 42.
[12]JIN J H, ZHANG W M, LI F X, et al. Robotic binding of rebar based on active perception and planning[J]. Automation in Construction,2021, 132: 103939.
[13]住房和城乡建设部.住房和城乡建设部等部门关于推动智能建造与建筑工业化协同发展的指导意见[EB/OL].(2020-07-03)[2023-12-27].https://www.gov.cn/zhengce/zhengceku/2020-07/28/content_5530762.htm.
Ministry of Housing and Urban-rural Development. Guiding opinions of the Ministry of Housing and Urban-rural Development and other departments on promoting the coordinated development of intelligent construction and building industrialization[EB/OL].(2020-07-03)[2023-12-27].https://www.gov.cn/zhengce/zhengceku/2020-07/28/content_5530762.htm.
[14]住房和城乡建设部.“十四五”建筑业发展规划[EB/OL].(2022-01-01)[2023-12-27].https://www.gov.cn/zhengce/zhengceku/2022-01/27/5670687/files/12 d50c613b344165afb21bc596a190fc.pdf.
Ministry of Housing and Urban-rural Development. 14th five year plan for the development of the construction industry[EB/OL].(2022-01-01)[2023-12-27]. https://www.gov.cn/zhengce/zhengceku/2022-01/27/5670687/files/12d50c613b344165afb21bc 596a190fc.pdf.
[15]GHAREEB G. Investigation of the potentials and constrains of employing robots in construction in Egypt[J]. The Egyptian International Journal of Engineering Sciences and Technology, 2021, 36(1): 7-24.
[16]陈海龙.钢筋混凝土工程施工技术在建筑项目中的应用[J].工程建设与设计,2022(2):114-116.
CHEN Hailong. The application of reinforced concrete engineering construction technology in building construction projects[J]. Construction & Design for Engineering, 2022(2): 114-116.
[17]张园园,贡金鑫.混凝土结构钢筋构造对比分析[J].建筑科学与工程学报,2012,29(1):70-86.
ZHANG Yuanyuan, GONG Jinxin. Comparative analysis of rebar detailing for RC structures[J]. Journal of Architecture and Civil Engineering, 2012, 29(1): 70-86.
[18]RAJ R, KOS A. A comprehensive study of mobile robot: history, developments, applications, and future research perspectives[J]. Applied Sciences, 2022, 12(14): 6951.
[19]CARDNO C A. Robotic rebar-tying system uses artificial intelligence[J]. Civil Engineering Magazine, 2018, 88(1): 38-39.
[20]Taisei Corporation. Developed autonomous rebar binding robot “T-iROBO Rebar”[EB/OL].(2017-10-17)[2023-12-28]. https://www.taisei.co.jp/about_us/wn/2017/171017_3490.html.
[21]COLDEWEY D. Skymul's drones secure rebar on the fly to speed up construction[EB/OL].(2021-03-03)[2023-12-28]. https://techcrunch.com/2021/03/02/skymul-rebar-tying-robot-construction/.
[22]GEORGE E. Skymul launches legged robot at world of concrete 2023[EB/OL].(2023-07-13)[2024-01-18]. https://skymul.com/index.php/2023/07/13/skymul-launches-legged-robot-at-world-of-concrete-2023/.
[23]MOMENI M, RELEFORS J, KHATRY A, et al. Automated fabrication of reinforcement cages using a robotized production cell[J]. Automation in Construction, 2022, 133: 103990.
[24]陈公正,刘世涛,韩立芳,等.钢筋绑扎机器人及钢筋交叉点的识别方法:CN114263352A[P].2022-04-01.
CHEN Gongzheng, LIU Shitao, HAN Lifang, et al. Reinforcing steel bar binding robot and reinforcing steel bar intersection point identification method: CN114263352A[P]. 2022-04-01.
[25]韩立芳,葛 杰,杨 燕,等.钢筋绑扎机器人智能绑扎施工方法及系统:CN111576885A[P].2020-08-25.
HAN Lifang, GE Jie, YANG Yan, et al. Intelligent tying construction method and system of steel bar tying robots: CN111576885A[P]. 2020-08-25.
[26]中建八局.中建八局钢筋绑扎机器人,可绑扎Φ8 mm~20 mm钢筋网[EB/OL].(2022-07-02)[2024-01-18].https://baijiahao.baidu.com/s id=173724204754270 4313.
China Construction Eighth Bureau. China Construction Eighth Bureau steel reinforcement binding robot, capable of binding Φ 8 mm~20 mm steel mesh[EB/OL].(2022-07-02)[2024-01-18]. https://baijiahao.baidu.com/s id=1737242047542704313.
[27]中建八局.中建八局自行式智能钢筋绑扎机器人(RBBD-Bot2.0)首次亮相[EB/OL].(2022-11-28)[2023-12-28].https://m.thepaper.cn/baijiahao_20940885.
China Construction Eighth Bureau. China Construction Eighth Engineering Bureau's autonomous intelligent reinforcement binding robot(RBBD Bot2.0)debuts for the first time[EB/OL].(2022-11-28)[2023-12-28]. https://m.thepaper.cn/baijiahao_20940885.
[28]董国梁.基于深度学习的钢筋绑扎机器人视觉系统研究[D].北京:北京建筑大学,2022.
DONG Guoliang. Research on visual system of steel binding robot based on deep learning[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2022.
[29]YOO J H, LEE S W, PARK S K, et al. A robust lane detection method based on vanishing point estimation using the relevance of line segments[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3254-3266.
[30]ROTHER C. A new approach to vanishing point detection in architectural environments[J]. Image and Vision Computing, 2002, 20(9/10): 647-655.
[31]PAO D C W, LI H F, JAYAKUMAR R. Shapes recognition using the straight line Hough transform:theory and generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11): 1076-1089.
[32]ALMAZÀN E J, TAL R, QIAN Y M, et al. MCMLSD: a dynamic programming approach to line segment detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 5854-5862.
[33]MAHAL M, BLANKSVARD T, TALJSTEN B, et al. Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams[J]. Engineering Structures, 2015, 105: 277-288.
[34]TOPAL C, AKINLAR C. Edge drawing: a combined real-time edge and segment detector[J]. Journal of Visual Communication and Image Representation, 2012, 23(6): 862-872.
[35]COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models-their training and application[J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59.
[36]COOTES T F, WALKER K, TAYLOR C J. View-based active appearance models[C]//IEEE. Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble: IEEE, 2000: 227-232.
[37]DOLLAR P, WELINDER P, PERONA P. Cascaded pose regression[C]//IEEE. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 1078-1085.
[38]XIONG X H,DE LA TORRE F. Global supervised descent method[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston: IEEE, 2015: 2664-2673.
[39]TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1653-1660.
[40]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[41]GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision(ICCV). Santiago: IEEE, 2015: 1440-1448.
[42]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[43]NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//LEIBE B, MATAS J, SEBE N, et al. Computer Vision — ECCV 2016. Cham: Springer International Publishing, 2016: 483-499.
[44]DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C]//IEEE. Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 6569-6578.
[45]TERVEN J, CORDOVA-ESPARZA D M, ROMERO-GONZALEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[46]LAI B X, LI Z W, LI W B, et al. Homography-based visual servoing of eye-in-hand robots with exact depth estimation[J]. IEEE Transactions on Industrial Electronics, 2024, 71(4): 3832-3841.
[47]WANG S, HU Y Z. Binocular visual positioning under inhomogeneous,transforming and fluctuating media[J]. Traitement Du Signal, 2018, 35(3/4): 253-276.
[48]WANG S J, YE A X, GUO H, et al. Autonomous pallet localization and picking for industrial forklifts based on the line structured light[C]//IEEE. 2016 IEEE International Conference on Mechatronics and Automation. Harbin: IEEE, 2016: 707-713.
[49]MICHEL D, QAMMAZ A, ARGYROS A A. Markerless 3D human pose estimation and tracking based on RGBD cameras:an experimental evaluation[C]//ACM. Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments. Island of Rhodes: ACM, 2017: 115-122.
[50]陈宗海,裴浩渊,王纪凯,等.基于单目相机的视觉重定位方法综述[J].机器人,2021,43(3):373-384.
CHEN Zonghai, PEI Haoyuan, WANG Jikai, et al. Survey of monocular camera-based visual relocalization[J]. Robot, 2021, 43(3): 373-384.
[51]ZHAO X T, CHENG L, PENG R, et al. Research on 3D space target following method of mobile robot based on binocular vision[C]//WANG R, CHEN Z Q, ZHANG W C, et al. Proceedings of the 11th International Conference on Modelling, Identification and Control(ICMIC2019). Singapore: Springer, 2020:1011-1024.
[52]林福师,薛浩宇,蒙国良.基于双目视觉的机器人引导系统研究[J].电子质量,2022(10):77-82.
LIN Fushi, XUE Haoyu, MENG Guoliang. Research on robot guidance system based on binocular vision[J]. Electronics Quality, 2022(10): 77-82.
[53]CHENG L, SONG B, DAI Y T, et al. Mobile robot indoor dual Kalman filter localisation based on inertial measurement and stereo vision[J]. CAAI Transactions on Intelligence Technology, 2017, 2(4): 173-181.
[54]刘学超,张 波,郑魁敬.基于深度相机的汽车转向节位姿估计研究[J].机床与液压,2022,50(14):1-7.
LIU Xuechao, ZHANG Bo, ZHENG Kuijing. Pose estimation of automobile steering knuckle based on depth camera[J]. Machine Tool & Hydraulics, 2022, 50(14): 1-7.
[55]SUN Y X, LIU M,MENG M Q H. Motion removal for reliable RGB-D SLAM in dynamic environments[J]. Robotics and Autonomous Systems, 2018, 108: 115-128.
[56]ZHAO L, HE Z F. An in-coordinate interval adaptive Kalman filtering algorithm for INS/GPS/SMNS[C]//IEEE. IEEE 10th International Conference on Industrial Informatics. Beijing: IEEE, 2012: 41-44.
[57]谢林枫,蒋 超,孙秋芹,等.基于AMC算法的变电站巡检机器人地图创建与定位[J].电力工程技术,2019,38(5):16-23.
XIE Linfeng, JIANG Chao, SUN Qiuqin, et al. The global map's creating and positioning of substation inspection robot based on adaptive Monte Carlo particle filter algorithm[J]. Electric Power Engineering Technology, 2019, 38(5): 16-23.
[58]张书亮.基于多传感器融合的室内移动机器人定位与导航研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2021.
ZHANG Shuliang. Research on localization and navigation of indoor mobile robot based on multi-sensor fusion[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021.
[59]付 帝.多场景UWB定位技术研究[D].南京:东南大学,2021.
FU Di. Research on multi-scene UWB positioning technology[D]. Nanjing: Southeast University, 2021.
[60]王小波,张在琛,胡成博,等.一种改进的UWB空间定位方法研究[J].电力工程技术,2018,37(3):72-77.
WANG Xiaobo, ZHANG Zaichen, HU Chengbo, et al. Research on an improved UWB space positioning method[J]. Electric Power Engineering Technology, 2018, 37(3): 72-77.
[61]ZHANG H H, WANG X S, CHEN Y,et al.Research on vision-based navigation for plant protection UAV under the near color background[J]. Symmetry, 2019, 11(4): 533.
[62]YANG C C, SHAO H R. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150-157.
[63]DAVIDSON P, PICHE R. A survey of selected indoor positioning methods for smartphones[J].IEEE Communications Surveys & Tutorials, 2017,19(2):1347-1370.
[64]ELSANHOURY M, KOLJONEN J, VALISUO P, et al. Survey on recent advances in integrated GNSSs towards seamless navigation using multi-sensor fusion technology[C]//ION. The International Technical Meeting of the Satellite Division of the Institute of Navigation. St. Louis: Institute of Navigation, 2021: 2754-2765.
[65]SHUAI Z P, YU H Y. Multi-sensor fusion for autonomous positioning of indoor robots[C]//ION. The International Technical Meeting of the Satellite Division of the Institute of Navigation. St. Louis: Institute of Navigation, 2021: 105-112.
[66]YOUSUF S, KADRI M B. Robot localization in indoor and outdoor environments by multi-sensor fusion[C]//IEEE. 2018 14th International Conference on Emerging Technologies(ICET2018). Islamabad: IEEE, 2018: 1-6.
[67]武东杰,仲训昱,崔晓珍,等.具有全局速度约束的惯性/编码器/视觉/激光融合定位方法:IEVL-Fusion[J].机器人,2022,44(4):443-452.
WU Dongjie, ZHONG Xunyu, CUI Xiaozhen, et al. IEVL-fusion: an inertial/encoder/vision/laser fusion positioning method with global velocity constraint[J]. Robot, 2022, 44(4): 443-452.
[68]薛 灿,韩 强,王 智.基于信号统计模型的变电站半遮挡融合定位方法[J].电力工程技术,2023,42(1):185-192.
XUE Can, HAN Qiang, WANG Zhi. Semi-occlusion substation fusion positioning method based on multi-sensor signal statistical model[J]. Electric Power Engineering Technology, 2023, 42(1): 185-192.
[69]LIN S W, LIU A,WANG J G, et al. A review of path-planning approaches for multiple mobile robots[J]. Machines, 2022, 10(9): 773.
[70]ALSHAMMREI S, BOUBAKER S, KOLSI L. Improved dijkstra algorithm for mobile robot path planning and obstacle avoidance[J]. Computers, Materials & Continua, 2022, 72(3): 5939-5954.
[71]ZHANG J, WU J, SHEN X, et al. Autonomous land vehicle path planning algorithm based on improved heuristic function of A-star[J]. International Journal of Advanced Robotic Systems, 2021, 18(5): 17298814211042730.
[72]赵 晓,王 铮,黄程侃,等.基于改进A*算法的移动机器人路径规划[J].机器人,2018,40(6):903-910.
ZHAO Xiao, WANG Zheng, HUANG Chengkan,et al. Mobile robot path planning based on an improved A* algorithm[J].Robot, 2018, 40(6): 903-910.
[73]RYU H, PARK Y. Improved informed RRT* using gridmap skeletonization for mobile robot path planning[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(11): 2033-2039.
[74]MOHANTA J C, KESHARI A. A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation[J]. Applied Soft Computing, 2019, 79: 391-409.
[75]WANG S B, LIN F, WANG T C, et al. Autonomous vehicle path planning based on driver characteristics identification and improved artificial potential field[J]. Actuators, 2022, 11(2): 52.
[76]CHANG L, SHAN L, JIANG C, et al. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment[J]. Autonomous Robots, 2021, 45(1): 51-76.
[77]王洪斌,尹鹏衡,郑 维,等.基于改进的A*算法与动态窗口法的移动机器人路径规划[J].机器人,2020,42(3):346-353.
WANG Hongbin, YIN Pengheng, ZHENG Wei, et al. Mobile robot path planning based on improved A* algorithm and dynamic window method[J]. Robot, 2020, 42(3): 346-353.
[78]AJEIL F H, IBRAHEEM I K,SAHIB M A, et al. Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm[J]. Applied Soft Computing, 2020, 89: 106076.
[79]GAO W X, TANG Q, YE B F, et al. An enhanced heuristic ant colony optimization for mobile robot path planning[J]. Soft Computing, 2020, 24(8): 6139-6150.
[80]ZHANG T W, XU G H, ZHAN X S, et al. A new hybrid algorithm for path planning of mobile robot[J]. The Journal of Supercomputing, 2022, 78(3): 4158-4181.
[81]PEI M, AN H, LIU B, et al. An improved dyna-Q algorithm for mobile robot path planning in unknown dynamic environment[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4415-4425.
[82]ZHANG X, SHI X X, ZHANG Z Q, et al. A DDQN path planning algorithm based on experience classification and multi steps for mobile robots[J]. Electronics, 2022, 11(14): 2120.
[83]KIM D, OH S. TRC: trust region conditional value at risk for safe reinforcement learning[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2621-2628.
[84]WEN S H, WEN Z T, ZHANG D, et al. A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning[J]. Applied Soft Computing, 2021, 110: 107605.
[85]GUO S Y, ZHANG X G, ZHENG Y S, et al. An autonomous path planning model for unmanned ships based on deep reinforcement learning[J]. Sensors, 2020, 20(2): 426.
[86]ZENG J J, JU R S, QIN L, et al. Navigation in unknown dynamic environments based on deep reinforcement learning[J]. Sensors, 2019, 19(18): 3837.
[87]ASTROM K J, HAGGLUND T. The future of PID control[J]. Control Engineering Practice, 2001, 9(11): 1163-1175.
[88]DONG J J, DUAN X G. A robust control via a fuzzy system with PID for the ROV[J]. Sensors, 2023, 23(2): 821.
[89]卢开诚,刘铠诚,董树锋.基于模糊单神经元PI的微电网频率自适应控制[J].电力工程技术,2022,41(5):131-139.
LU Kaicheng, LIU Kaicheng, DONG Shufeng. A microgrid frequency control method based on fuzzy single neuron adaptive PI control[J]. Electric Power Engineering Technology, 2022, 41(5): 131-139.
[90]LONG C Q, QIN X H, BIAN Y G, et al. Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC[J]. Ocean Engineering, 2021, 241: 109991.
[91]WANG Z S, LIU Y, GUAN Z D, et al. An adaptive sliding mode motion control method of remote operated vehicle[J]. IEEE Access, 2021, 9: 22447-22454.
[92]张 琦,田梦倩,李伟强,等.复式套索人工肌肉驱动的下肢外骨骼的运动控制[J].机器人,2021,43(2):214-223.
ZHANG Qi, TIAN Mengqian, LI Weiqiang, et al. Motion control of a lower-limb exoskeleton actuated by compound tendon-sheath artificial muscles[J]. Robot, 2021, 43(2): 214-223.
[93]翟光雯,吴贞犇.自抗扰控制器在水下机器人中的应用研究[J].科技创新与应用,2022,12(6):1-6.
ZHAI Guangwen, WU Zhenben. Research on application of active disturbance rejection controller in underwater vehicle[J]. Technology Innovation and Application, 2022, 12(6): 1-6.
[94]黄茹楠,丁 宁.基于改进PID神经网络算法的AUV垂直面控制[J].系统仿真学报,2020,32(2):229-235.
HUANG Runan, DING Ning. AUV vertical plane control based on improved PID neural network algorithm[J]. Journal of System Simulation, 2020, 32(2): 229-235.
[95]李宏宇,王 莹,陆 震,等.基于PSO-GA算法和神经网络的水下机器人姿态协调控制[J/OL].中国测试,2022:1-7.(2022-03-23). https://kns.cnki.net/KCMS/detail/detail.aspx filename=SYCS2022032 1018&dbname=CJFD&dbcode=CJFQ.
LI Hongyu, WANG Ying, LU Zhen, et al. Coordinated attitude control of underwater vehicle based on PSO-GA algorithm and neural network[J/OL]. China Measurement & Test, 2022:1-7.(2022-03-23). https://kns.cnki.net/KCMS/detail/detail.aspx filename=SYCS20220321018&dbname=CJFD&db code=CJFQ.
[96]LIU Y, LOGAN B, LIU N, et al. Deep reinforcement learning for dynamic treatment regimes on medical registry data[C]//IEEE. 2017 IEEE International Conference on Healthcare Informatics(ICHI). Park City: IEEE,2017: 380-385.
[97]NGUYEN H, LA H. Review of deep reinforcement learning for robot manipulation[C]//IEEE. 2019 Third IEEE International Conference on Robotic Computing(IRC). Naples: IEEE, 2019: 590-595.
[98]GU S X, HOLLY E, LILLICRAP T, et al. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates[C]//IEEE. 2017 IEEE International Conference on Robotics and Automation(ICRA). Singapore: IEEE, 2017: 3389-3396.
[99]陈佳盼,郑敏华.基于深度强化学习的机器人操作行为研究综述[J].机器人,2022,44(2):236-256.
CHEN Jiapan, ZHENG Minhua. A survey of robot manipulation behavior research based on deep reinforcement learning[J]. Robot, 2022, 44(2): 236-256.
[100]DAI G B, LIU Y C. Distributed coordination and cooperation control for networked mobile manipulators[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5065-5074.
[101]TEKA B, RAJA R, DUTTA A. Learning based end effector tracking control of a mobile manipulator for performing tasks on an uneven terrain[J]. International Journal of Intelligent Robotics and Applications, 2019, 3(2): 102-114.
[102]KUME Y, HIRATA Y, KOSUGE K. Coordinated motion control of multiple mobile manipulators handling a single object without using force/torque sensors[C]//IEEE. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE, 2007: 4077-4082.
[103]TOURRETTE T, DEREMETZ M, NAUD O, et al. Close coordination of mobile robots using radio beacons: a new concept aimed at smart spraying in agriculture[C]//IEEE. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Madrid: IEEE, 2018: 7727-7734.
[104]REN Y, SOSNOWSKI S, HIRCHE S. Fully distributed cooperation for networked uncertain mobile manipulators[J]. IEEE Transactions on Robotics, 2020, 36(4): 984-1003.
[105]HU Z W, CONG S C, SONG T K, et al.AirScope:mobile robots-assisted cooperative indoor air quality sensing by distributed deep reinforcement learning[J]. IEEE Internet of Things Journal, 2020, 7(9): 9189-9200.
[106]ZHAI Y Z, DING B, ZHANG P F, et al.Cooperative offloading for multiple robot applications[C]//IEEE. 2020 IEEE International Conference on Joint Cloud Computing. Oxford: IEEE, 2020: 63-70.
[107]JIN L, ZHANG Y N. G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 153-164.
[108]JIN L, LI S, LUO X, et al. Neural dynamics for cooperative control of redundant robot manipulators[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3812-3821.
[109]LI X X, XU Z H, LI S, et al. Cooperative kinematic control for multiple redundant manipulators under partially known information using recurrent neural network[J]. IEEE Access, 2020, 8: 40029-40038.
[110]JANNER M, FU J, ZHANG M, et al. When to trust your model: model-based policy optimization[C]//NeurIPS. Proceedings of the 33rd Annual Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2019: 1-18.
[111]LIU Y K, XU H, LIU D, et al. A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping[J]. Robotics and Computer-integrated Manufacturing, 2022, 78: 102365.
[112]ALI SHAHID A, ROVEDA L, PIGA D, et al. Learning continuous control actions for robotic grasping with reinforcement learning[C]//IEEE. 2020 IEEE International Conference on Systems, Man, and Cybernetics(SMC). Toronto: IEEE, 2020: 4066-4072.https://www.sohu.com/a/564423464_121123727.
[113]陈 钢,高贤渊,赵治恺,等. 空间机械臂智能规划与控制技术[J].南京航空航天大学学报,2022,54(1):1-16.
CHEN Gang, GAO Xianyuan, ZHAO Zhikai, et al. Review on Intelligent Planning and Control Technology of Space Manipulator[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(1): 1-16.