|本期目录/Table of Contents|

[1]刘智宸,邓鹏,陈仁朋,等.地铁车站中柱轴压比高频高幅变化规律及其滞回性能退化分析[J].建筑科学与工程学报,2025,42(05):74-84.[doi:10.19815/j.jace.2024.02019]
 LIU Zhichen,DENG Peng,CHEN Renpeng,et al.Analysis of high frequency and amplitude variation law of axial compression ratio of central column in subway station and hysteretic performance degradation[J].Journal of Architecture and Civil Engineering,2025,42(05):74-84.[doi:10.19815/j.jace.2024.02019]
点击复制

地铁车站中柱轴压比高频高幅变化规律及其滞回性能退化分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年05期
页码:
74-84
栏目:
建筑结构
出版日期:
2025-09-30

文章信息/Info

Title:
Analysis of high frequency and amplitude variation law of axial compression ratio of central column in subway station and hysteretic performance degradation
文章编号:
1673-2049(2025)05-0074-11
作者:
刘智宸1,邓鹏1,2,陈仁朋1,2,可文海3
(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 湖南大学 地下空间开发先进技术与智能装备湖南省工程研究中心,湖南 长沙 410082; 3. 华东交通大学 土木建筑学院,江西 南昌 330013)
Author(s):
LIU Zhichen1, DENG Peng1,2, CHEN Renpeng1,2, KE Wenhai3
(1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. Hunan Engineering Research Central for Advanced Technology and Intelligent Equipment for Underground Space Development, Hunan University, Changsha 410082, Hunan, China; 3. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China)
关键词:
中柱 有限元模型 变轴压比 幅值 频率 滞回性能
Keywords:
central column finite element model variable axial compression ratio amplitude frequency hysteretic performance
分类号:
TU924
DOI:
10.19815/j.jace.2024.02019
文献标志码:
A
摘要:
基于地铁车站的有限元模型,通过非线性时程分析得出不同抗震设计方案下中柱柱顶的轴压比演变规律,并进行数值量化; 基于量化后的变轴压比演化方式,采用经试验验证的中柱模型,探究了变轴压比的变化频率、变化幅值和变化相位对中柱滞回性能的影响,并讨论了中柱的混凝土损伤。结果表明:中柱柱顶的水平位移和竖向轴压比变化具有明显的异步性,后者变化频率更快,后者的变化频率约为前者的1.4倍~3.8倍,竖向轴压比的变化幅值为0.08~0.68; 相较于施加竖向恒定轴压比,在中柱柱顶施加的高变轴压比对柱的承载力、能量耗散和刚度退化产生了显著的不利影响,并加剧了柱的混凝土受压损伤; 竖向变轴压比的变化频率为3和幅值变化大的工况损伤尤为明显,承载力和能量耗散分别降低约50%和74%。
Abstract:
Based on the finite element model of subway station, the evolution law of axial compression ratio of central column top under different seismic design schemes was obtained through nonlinear time history analysis, and the numerical quantification was carried out. Based on the quantified evolution mode of variable axial compression ratio, the influence of variable frequency, amplitude, and phase of variable axial compression ratio on hysteretic properties of central column was explored through the experimental verified central column model, and the concrete damage of central column was discussed. The results show that the horizontal displacement of the central column top and the vertical axial compression ratio change asynchronously, the latter change frequency is faster, the latter change frequency is about 1.4-3.8 times of the former, and the vertical axial compression ratio change amplitude is 0.08-0.68. Compared with the vertical constant axial compression ratio, the high variable axial compression ratio applied on the central column top has a significant adverse effect on the bearing capacity, energy dissipation, and stiffness degradation of column, and aggravates the concrete compression damage of column. When the frequency of vertical axial compression ratio is 3 and the amplitude is large, the damage is particularly obvious, and the bearing capacity and energy dissipation are reduced by about 50% and 74% respectively.

参考文献/References:

[1] 曾佳明,朱忠义,吕 辉,等.考虑土-结构相互作用的大跨度空间结构抗震研究进展[J].建筑科学与工程学报, 2024, 41(1): 69-82.
ZENG Jiaming, ZHU Zhongyi, LYU Hui, et al. Research progress on seismic resistance of large-span spatial structures considering soil-structure interaction[J]. Journal of Architecture and Civil Engineering, 2024, 41(1): 69-82.
[2]陈湘生,付艳斌,陈 曦,等.地下空间施工技术进展及数智化技术现状[J].中国公路学报,2022,35(1):1-12.
CHEN Xiangsheng, FU Yanbin, CHEN Xi, et al. Progress in underground space construction technology and technical challenges of digital intelligence[J]. China Journal of Highway and Transport, 2022, 35(1): 1-12.
[3]YAMATO T, UMEHARA T, AOKI H, et al. Damage to Daikai subway station of Kobe rapid transit system and estimation of its reason during the 1995 Hyogoken-Nanbu earthquake[J]. Doboku Gakkai Ronbunshu, 1996, 1996(537): 303-320.
[4]ZHUANG H Y, ZHAO C, CHEN S, et al. Seismic performance of underground subway station with sliding between column and longitudinal beam[J]. Tunnelling and Underground Space Technology, 2020, 102: 103439.
[5]AN X H, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin earthquake[J]. Cement and Concrete Composites, 1997, 19(3): 241-257.
[6]刘如山,邬玉斌,杜修力.用纤维模型对地下结构地震破坏的数值模拟分析[J].北京工业大学学报,2010,36(11):1488-1495.
LIU Rushan, WU Yubin, DU Xiuli. Numerical simulation analysis on earthquake damage of underground structure with fiber model[J]. Journal of Beijing University of Technology, 2010, 36(11): 1488-1495.
[7]FERDOUS W, MANALO A, PEAURIL J, et al. Testing and modelling the fatigue behaviour of GFRP composites — effect of stress level,stress concentration and frequency[J]. Engineering Science and Technology, an International Journal, 2020, 23(5): 1223-1232.
[8]ZHAO W C, YE J H, QIAN J. Dynamic behavior and damage mechanisms of reinforced concrete piers subjected to truck impact[J]. Engineering Failure Analysis, 2021, 121: 105158.
[9]XU G S, WU B, JIA D D, et al. Quasi-static tests of RC columns under variable axial forces and rotations[J]. Engineering Structures, 2018, 162: 60-71.
[10]RODRIGUES H, FURTADO A, ARÊDE A. Behavior of rectangular reinforced-concrete columns under biaxial cyclic loading and variable axial loads[J]. Journal of Structural Engineering, 2016, 142(1): 04015085.
[11]WU B Y, SUN G J, LI H J, et al. Effect of variable axial load on seismic behaviour of reinforced concrete columns[J]. Engineering Structures, 2022, 250: 113388.
[12]郭玉荣,梁康殷,吕 聪.双轴加载下变轴力大尺寸钢筋混凝土柱抗震性能试验研究[J].建筑结构学报,2024,45(5):155-163.
GUO Yurong, LIANG Kangyin, LU Cong. Experimental study on seismic behavior of large size reinforced concrete columns under biaxial loading and variable axial loads[J]. Journal of Building Structures, 2024, 45(5): 155-163.
[13]ZHUANG H Y, HU Z H, WANG X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.
[14]地下结构抗震设计标准:GB/T 51336—2018[S].北京:中国建筑工业出版社,2018.
Seismic design standards for underground structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018.
[15]王海东,常广乐,盛旺成.近场水平、竖向地震共同作用下地基-基础-RC框架结构抗震性能研究[J].地震工程与工程振动,2017,37(1):192-198.
WANG Haidong, CHANG Guangle, SHENG Wangcheng. Seismic performance of soil-foundation-RC frame under near-fault horizontal and vertical earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(1): 192-198.
[16]YIN Y P. Vertical acceleration effect on landsides triggered by the Wenchuan earthquake, China[J]. Environmental Earth Sciences, 2014, 71(11): 4703-4714.
[17]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2004.
Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2004.
[18]MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering, 1988, 114(8): 1804-1826.
[19]LIU Z C, DENG P, LI Y L, et al. Analysis of axial force variations and seismic performance of subway station columns under earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2024, 186: 108878.
[20]DI J, FAN J H, ZHOU X H, et al. Hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance[J]. Engineering Structures, 2022, 251: 113532.
[21]HASSAN W M, ELMORSY M. Database trends and critical review of seismic performance tests on high strength steel reinforced concrete components[J]. Engineering Structures, 2021, 239: 112092.

相似文献/References:

[1]王春生,王丁,王茜,等.钢桥塔塔-基连接的有限元分析[J].建筑科学与工程学报,2010,27(02):89.
 WANG Chun-sheng,WANG Ding,WANG Qian,et al.Finite Element Analysis of Connection for Steel Pylon and Concrete Foundation[J].Journal of Architecture and Civil Engineering,2010,27(05):89.
[2]董锐,赵林,葛耀君.大型冷却塔人字柱临时期最优拆除位置分析[J].建筑科学与工程学报,2011,28(03):56.
 DONG Rui,ZHAO Lin,GE Yao-jun.Analysis of Optimal Removing Location of Diagonal Columns in Large Cooling Towers' Temporary Period[J].Journal of Architecture and Civil Engineering,2011,28(05):56.
[3]张皓,李宏男.考虑应变率效应的钢筋混凝土框架结构弹塑性地震反应分析[J].建筑科学与工程学报,2011,28(03):74.
 ZHANG Hao,LI Hong-nan.Elastic-plastic Seismic Response Analysis of Reinforced Concrete Frame Structure with Strain Rate Effect[J].Journal of Architecture and Civil Engineering,2011,28(05):74.
[4]曹平周,过轶青.压弯荷载作用下复合节能轻质墙板的有限元分析[J].建筑科学与工程学报,2012,29(04):89.
 CAO Ping-zhou,GUO Yi-qing.Finite Element Analysis of Light Weight Energy-saving Composite Wall Under Vertical and Lateral Loads[J].Journal of Architecture and Civil Engineering,2012,29(05):89.
[5]梁燕,赵桂娟,谢永利,等.黄土增湿变形的数值模型[J].建筑科学与工程学报,2007,24(03):43.
 LIANG Yan,ZHAO Gui-juan,XIE Yong-li,et al.Numerical Model of Loess Moistening Deformation[J].Journal of Architecture and Civil Engineering,2007,24(05):43.
[6]赵海龙,徐瑞文.型钢混凝土T形柱轴压性能分析[J].建筑科学与工程学报,2023,40(04):60.[doi:10.19815/j.jace.2021.11062]
 ZHAO Hailong,XU Ruiwen.Analysis of axial compression performance of steel reinforced concrete T-shaped column[J].Journal of Architecture and Civil Engineering,2023,40(05):60.[doi:10.19815/j.jace.2021.11062]
[7]黄宣凯,廖飞宇,王献挚,等.坑槽腐蚀对钢管混凝土侧向冲击性能的影响研究[J].建筑科学与工程学报,2025,42(04):31.[doi:10.19815/j.jace.2023.12006]
 HUANG Xuankai,LIAO Feiyu,WANG Xianzhi,et al.Study on effect of pitting corrosion on behavior of concrete-filled steel tube under lateral impact[J].Journal of Architecture and Civil Engineering,2025,42(05):31.[doi:10.19815/j.jace.2023.12006]

备注/Memo

备注/Memo:
收稿日期:2024-02-08 投稿网址:http://jace.chd.edu.cn
基金项目:国家自然科学基金项目(52090082); 长沙市杰出创新青年培养计划项目(kq2107010); 国家自然科学基金青年科学基金项目(52108321)
通信作者:邓 鹏(1989-),男,工学博士,副教授,E-mail:dengpeng@hnu.edu.cn。
Author resume: DENG Peng(1989-), male, PhD, associate professor, E-mail: dengpeng@hnu.edu.cn.
更新日期/Last Update: 2025-09-25