|本期目录/Table of Contents|

[1]刘家良,苗吉军,王升旭,等.不同冷却条件下高温混凝土性能变化的试验研究与数值分析[J].建筑科学与工程学报,2025,42(05):125-134.[doi:10.19815/j.jace.2024.01002]
 LIU Jialiang,MIAO Jijun,WANG Shengxu,et al.Experimental study and numerical analysis on performance changes of high-temperature concrete under different cooling conditions[J].Journal of Architecture and Civil Engineering,2025,42(05):125-134.[doi:10.19815/j.jace.2024.01002]
点击复制

不同冷却条件下高温混凝土性能变化的试验研究与数值分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年05期
页码:
125-134
栏目:
建筑材料
出版日期:
2025-09-30

文章信息/Info

Title:
Experimental study and numerical analysis on performance changes of high-temperature concrete under different cooling conditions
文章编号:
1673-2049(2025)05-0125-10
作者:
刘家良1,苗吉军1,王升旭1,刘延春1,刘才玮1,辛鲁超2
(1. 青岛理工大学 土木工程学院,山东 青岛 266520; 2. 临沂城建建设集团有限公司,山东 临沂 276002)
Author(s):
LIU Jialiang1, MIAO Jijun1, WANG Shengxu1, LIU Yanchun1, LIU Caiwei1, XIN Luchao2
(1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China; 2. Linyi Urban Construction Group Co., Ltd, Linyi 276002, Shandong, China)
关键词:
混凝土 冷却方式 抗压强度 温度差 数值分析
Keywords:
concrete cooling method compressive strength temperature difference numerical analysis
分类号:
TU528
DOI:
10.19815/j.jace.2024.01002
文献标志码:
A
摘要:
为了研究高温混凝土在冷却过程中的热量传输规律和力学性能变化,设计了40组120块150 mm×150 mm×150 mm标准混凝土立方体试块,以混凝土受火温度、冷却方式、喷水冷却时间为变量,分别对混凝土进行加热试验、冷却试验和抗压强度试验。根据试验结果,提出了相应的温度数值模型,研究不同冷却方式过程中高温混凝土的传热规律。结果表明:高温混凝土水冷却的降温速度明显快于自然冷却,100 ℃可作为混凝土水冷却过程的分界点,当温度下降至100 ℃后,浸水冷却和喷水冷却的降温速率显著放缓; 在喷水冷却前期,喷水引起的“热冲击”会导致混凝土产生巨大的内外温差,造成显著的力学性能损失,随着试验进行,混凝土温差缓慢消失,因此在冷却后期,抗压强度逐渐恢复; 经过迭代优化降温过程中混凝土的边界条件与热工参数,提出的ABAQUS有限元模型计算值与试验值吻合度良好,可为高温混凝土水冷却热量传输提供理论参考。
Abstract:
In order to study the heat transfer law and mechanical performance changes of high-temperature concrete during the cooling process, 40 sets of 120 standard concrete cube specimens(150 mm×150 mm×150 mm)were designed. The concrete was subjected to heating tests, cooling tests, and compressive strength tests with variables such as fire temperature, cooling method, and water spray cooling time. Based on the experimental results, a corresponding temperature numerical model was proposed to study the heat transfer law of high-temperature concrete during different cooling methods. The results show that the cooling rate of high-temperature concrete water cooling is significantly faster than natural cooling. 100 ℃ can be used as the boundary point for the concrete water cooling process. When the temperature drops to 100 ℃, the cooling rate of immersion cooling and spray cooling slows down significantly. In the early stage of water spray cooling, the “thermal shock” caused by water spray will result in a huge temperature difference between the inside and outside of the concrete, causing significant loss of mechanical properties. As the experiment progresses, the temperature difference of concrete slowly disappears. Therefore, in the later stage of cooling, the compressive strength gradually recovers. After iterative optimization of the boundary conditions and thermal parameters of concrete during the cooling process, the calculated values of the proposed ABAQUS finite element model has a good agreement with the experimental values, providing theoretical reference for the heat transfer of high-temperature concrete water cooling.

参考文献/References:

[1] MA Q M, GUO R X, ZHAO Z M, et al. Mechanical properties of concrete at high temperature: a review[J]. Construction and Building Materials, 2015, 93: 371-383.
[2]LIU Y Z, JIN B, HUO J S, et al. Effect of microstructure evolution on mechanical behaviour of concrete after high temperatures[J]. Magazine of Concrete Research, 2018, 70(15): 770-784.
[3]SARHAT S R, SHERWOOD E G. Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2013, 25(11): 1721-1730.
[4]NETINGER I, KESEGIC I, GULJAS I. The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates[J]. Fire Safety Journal, 2011, 46(7): 425-430.
[5]ZHAI Y, DENG Z C, LI N, et al. Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model[J]. Construction and Building Materials, 2014, 68: 777-782.
[6]POON C S, SHUI Z H, LAM L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures[J]. Cement and Concrete Research, 2004, 34(12): 2215-2222.
[7]BAMONTE P, GAMBAROVA P G. A study on the mechanical properties of self-compacting concrete at high temperature and after cooling[J]. Materials and Structures, 2012, 45(9): 1375-1387.
[8]BINGÖL A F, GÜL R. Residual bond strength between steel bars and concrete after elevated temperatures[J]. Fire Safety Journal, 2009, 44(6): 854-859.
[9]翟 越,艾晓芹,邓子辰,等.受火温度和冷却方式对混凝土抗压强度影响[J].湖南大学学报(自然科学版),2014,41(11):74-80.
ZHAI Yue, AI Xiaoqin, DENG Zichen, et al. Influences of cooling mode and high temperature on concrete compressive strength[J]. Journal of Hunan University(Natural Sciences), 2014, 41(11): 74-80.
[10]陈家强.关于湖南衡阳“11·3” 特大火灾坍塌事故的几个重要问题[J].消防科学与技术,2004,23(2):99-102.
CHEN Jiaqiang. Several important problems about the “11.3” catastrophic fire collapse accident in Hengyang, Hunan province[J]. Fire Science and Technology, 2004, 23(2): 99-102.
[11]贾福萍,吕恒林,崔艳莉,等.不同冷却方式对高温后混凝土性能退化研究[J].中国矿业大学学报,2009,38(1):25-29.
JIA Fuping, LV Henglin, CUI Yanli, et al. Research on degraded behaviors of research into the degraded properties of concrete specimens heated to different temperatures and then subject to various cooling methods[J]. Journal of China University of Mining & Technology, 2009, 38(1): 25-29.
[12]贾福萍,王永春,渠艳艳,等.冷却方式和静置时间对高温后混凝土残余强度影响[J].建筑材料学报,2011,14(3):400-405.
JIA Fuping, WANG Yongchun, QU Yanyan, et al. Influences of various cooling methods and standing time on residual strength of concrete after elevated temperature exposure[J]. Journal of Building Materials, 2011, 14(3): 400-405.
[13]XIAO J Z, KÖNIG G. Study on concrete at high temperature in China: an overview[J]. Fire Safety Journal, 2004, 39(1): 89-103.
[14]PENG G F, BIAN S H, GUO Z Q, et al. Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures[J]. Construction and Building Materials, 2008, 22(5): 948-955.
[15]BOTTE W, CASPEELE R. Post-cooling properties of concrete exposed to fire[J]. Fire Safety Journal, 2017, 92: 142-150.
[16]BI J, LIU P F, GAN F. Effects of the cooling treatment on the dynamic behavior of ordinary concrete exposed to high temperatures[J]. Construction and Building Materials, 2020, 248: 118688.
[17]普通混凝土拌合物性能试验方法标准:GB/T 50080—2016[S].北京:中国建筑工业出版社,2017.
Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Building Press, 2017.
[18]普通混凝土力学性能试验方法标准:GB/T 50081—2002[S].北京:中国建筑工业出版社,2003.
Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003.
[19]LI Q T, YUAN G L, SHU Q J. Effects of heating/cooling on recovery of strength and carbonation resistance of fire-damaged concrete[J]. Magazine of Concrete Research, 2014, 66(18): 925-936.
[20]周星宇,周 济,陈宗平.高温消防喷水冷却后混凝土应力-应变本构方程及剩余强度评估[J].工业建筑,2022,52(1):194-199,173.
ZHOU Xingyu, ZHOU Ji, CHEN Zongping. Stress-strain constitutive relation and residual strength evaluation of concrete after being subjected to high temperatures and spray cooling[J]. Industrial Construction, 2022, 52(1): 194-199, 173.
[21]杜 曦,陈有亮,王苏然,等.喷水冷却对聚丙烯纤维混凝土高温后力学性能的影响[J].力学季刊,2015,36(1):148-155.
DU Xi, CHEN Youliang, WANG Suran, et al. Effect of water spraying on post-high-temperature mechanical properties of polypropylene fiber concrete[J]. Chinese Quarterly of Mechanics, 2015, 36(1): 148-155.
[22]Eurocode 2: design of concrete structures — part 1-2: general rules — structural fire design: DS/EN 1992-1-2[S]. London: British Standards Institution, 2003.

相似文献/References:

[1]单炜,张绍逸.BFRP筋与混凝土的粘结-滑移本构关系[J].建筑科学与工程学报,2013,30(02):15.
 SHAN Wei,ZHANG Shao-yi.[J].Journal of Architecture and Civil Engineering,2013,30(05):15.
[2]马志鸣,赵铁军,巴光忠,等.冻融环境下引气混凝土的抗钢筋锈蚀能力研究[J].建筑科学与工程学报,2014,31(03):85.
 MA Zhi-ming,ZHAO Tie-jun,BA Guang-zhong,et al.Study on Ability of Resistance to Steel Corrosion of Air Entraining Concrete Under Freezethaw Environment[J].Journal of Architecture and Civil Engineering,2014,31(05):85.
[3]李苹,任晓丹,李 杰.基于隐式梯度理论的混凝土细观随机断裂模型[J].建筑科学与工程学报,2014,31(03):90.
 LI Ping,REN Xiao-dan,LI Jie.Meso Stochastic Fracture Model for Concrete Based on Implicit Gradient Theory[J].Journal of Architecture and Civil Engineering,2014,31(05):90.
[4]翟 越,赵均海,艾晓芹,等.基于统一强度理论的巴西圆盘劈裂强度分析[J].建筑科学与工程学报,2015,32(03):46.
 ZHAI Yue,ZHAO Jun-hai,AI Xiao-qin,et al.Analysis on Splitting Strength of Brazilian Disc Based on Unified Strength Theory[J].Journal of Architecture and Civil Engineering,2015,32(05):46.
[5]王 钧,任靖豪,郭大鹏.短切玄武岩纤维混凝土基本力学性能的尺寸效应[J].建筑科学与工程学报,2015,32(05):96.
 WANG Jun,REN Jing-hao,GUO Da-peng.Size Effect of Basic Mechanical Properties of Chopped Basalt Fiber Reinforced Concrete[J].Journal of Architecture and Civil Engineering,2015,32(05):96.
[6]吴方伯,张 航,李 钧,等.不同箱体形式混凝土密肋空心楼盖受力性能试验[J].建筑科学与工程学报,2016,33(02):7.
 WU Fang-bo,ZHANG Hang,LI Jun,et al.Experiment on Mechanical Behavior of Concrete Hollow-ribbed Floor with Different Box[J].Journal of Architecture and Civil Engineering,2016,33(05):7.
[7]孙 昊,李继超,甘 丹.肋间距超限钢筋与混凝土间粘结强度试验[J].建筑科学与工程学报,2016,33(02):107.
 SUN Hao,LI Ji-chao,GAN Dan.Experiment on Bond Strength Between Steel and Concrete with Overrun Rib Spacing[J].Journal of Architecture and Civil Engineering,2016,33(05):107.
[8]乔宏霞,路承功,李 宇,等.宁夏盐渍土地区现场暴露混凝土耐久性损伤评价试验[J].建筑科学与工程学报,2016,33(06):44.
 QIAO Hong-xia,LU Cheng-gong,LI Yu,et al.Experiment on Durability Damage Assessment of Concrete Field Exposed in Saline Soil Area of Ningxia[J].Journal of Architecture and Civil Engineering,2016,33(05):44.
[9]肖 杰,屈文俊,朱 鹏.不同粗细骨料组合下的混凝土耐硫酸腐蚀研究[J].建筑科学与工程学报,2016,33(06):81.
 XIAO Jie,QU Wen-jun,ZHU Peng.Research on Concrete Sulfuric Acid Resistance with Different Types of Coarse and Fine Aggregates[J].Journal of Architecture and Civil Engineering,2016,33(05):81.
[10]刘汉昆,孙超,李杰.基于CT扫描的混凝土三维细观数值模拟[J].建筑科学与工程学报,2010,27(01):54.
 LIU Han-kun,SUN Chao,LI Jie.Three-demensional Mesoscopic Numerical Simulation of Concrete Based on CT Scan[J].Journal of Architecture and Civil Engineering,2010,27(05):54.

备注/Memo

备注/Memo:
收稿日期:2024-01-02 投稿网址:http://jace.chd.edu.cn
基金项目:国家自然科学基金项目(52178487); 山东省自然科学基金项目(ZR2021ME228)
作者简介:刘家良(1991-),男,工学博士研究生,E-mail:18724766182@163.com。
通信作者:苗吉军(1970-),男,工学博士,教授,博士生导师,E-mail:msyu_990421@sina.com。
Author resumes: LIU Jialiang(1991-), male, doctoral student, E-mail: 18724766182@163.com; MIAO Jijun(1970-), male, PhD, professor, E-mail: msyu_990421@sina.com.
更新日期/Last Update: 2025-09-25