|本期目录/Table of Contents|

[1]戎贤,彭鹤翔,石晓娜,等.装配式钢管混凝土节点抗倒塌性能试验研究[J].建筑科学与工程学报,2025,42(06):68-76.[doi:10.19815/j.jace.2024.07060]
 RONG Xian,PENG Hexiang,SHI Xiaona,et al.Experimental study on collapse resistance of prefabricated concrete-filled steel tubular joints[J].Journal of Architecture and Civil Engineering,2025,42(06):68-76.[doi:10.19815/j.jace.2024.07060]
点击复制

装配式钢管混凝土节点抗倒塌性能试验研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年06期
页码:
68-76
栏目:
建筑结构
出版日期:
2025-11-25

文章信息/Info

Title:
Experimental study on collapse resistance of prefabricated concrete-filled steel tubular joints
文章编号:
1673-2049(2025)06-0068-09
作者:
戎贤1,2,彭鹤翔1,石晓娜1,3,李艳艳1,2
(1. 河北工业大学 土木与交通学院,天津 300401; 2. 河北工业大学 河北省土木技术创新中心,天津 300401; 3. 中土大地国际建筑设计有限公司,河北 石家庄 050035)
Author(s):
RONG Xian1,2, PENG Hexiang1, SHI Xiaona1,3, LI Yanyan1,2
(1.School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Civil Engineering Technology Innovation Center of Hebei Province, Hebei University of Technology, Tianjin 300401, China; 3. Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050035, Hebei, China)
关键词:
钢管混凝土节点 抗倒塌性能 拟静力荷载试验 悬链线机制 等效动力分析
Keywords:
concrete-filled steel tubular joint collapse resistance quasi-static load test catenary mechanism equivalent dynamic analysis
分类号:
TU398
DOI:
10.19815/j.jace.2024.07060
文献标志码:
A
摘要:
为研究钢管混凝土节点的抗倒塌性能,提升装配式钢管混凝土节点在中柱失效工况下的承载能力,研究了节点拉弯性能和转动能力对结构抗倒塌能力的影响。设计节点连接处螺栓孔分别开设圆孔和长圆孔的两个试件,开展线性拟静力荷载试验,通过试验现象探究节点关键部位的受力情况与应变分布情况。通过对节点内力进行分解,分析节点的抗弯机制和悬链线机制对竖向承载力的作用。同时对节点的延性性能进行等效动力分析,在DoD规范的基础上提出符合钢管混凝土节点的动力放大系数计算公式,并讨论其准确性。结果表明:远离节点核心区的梁截面在加载过程中始终处于弹性状态; 节点产生大位移前由钢梁发挥抗弯性能抵抗荷载,节点产生大位移后通过发挥悬链线效应抵抗荷载; 连接处螺栓孔开设长圆孔的节点通过削弱部分抗弯性能,更加充分地发挥了悬链线效应,提高了节点的延性、转动能力与承载力,且试验加载过程中应力分布均匀,不易产生应力集中破坏; 提出的动力放大系数计算公式可以较好地预测节点悬链线阶段的动态效应,更符合钢管混凝土结构连续倒塌工况下延性的发展趋势。
Abstract:
In order to study the collapse resistance of concrete-filled steel tubular joints and improve the bearing capacity of prefabricated concrete-filled steel tubular joints under the failure condition of the middle column, the influence of the tensile bending performance and rotation capacity of the joints on the collapse resistance of structure was studied. Two specimens with circular holes and long circular holes were designed for the bolt holes at the joint connection, and the linear quasi-static load test was carried out to explore the stress and strain distribution of the key parts of joint through the test phenomenon. By decomposing the internal force of the joint, the bending mechanism of the joint and the effect of catenary mechanism on the vertical bearing capacity were analyzed. At the same time, the equivalent dynamic analysis of the ductility performance of the joint was carried out. Based on the DoD specification, the calculation formula of the dynamic magnification factor of concrete-filled steel tubular joint was proposed, and its accuracy was discussed. The results show that the beam section far away from the core of the joint is always in an elastic state during the loading process. The steel beam exerts its bending resistance to resist the load before the joint produces large displacement, and exerts the catenary effect to resist the load after the joint produces large displacement. The joints with long circular holes in the bolt holes at the connection can give full play to the catenary effect by weakening some of the bending resistance, and improve the ductility, rotation capacity and bearing capacity of the joints. The stress distribution is uniform during the test loading process, which is not easy to produce stress concentration failure. The calculation formula of dynamic amplification factor can better predict the dynamic effect of node catenary stage, and is more in line with the development trend of ductility of concrete-filled steel tubular structures under progressive collapse conditions.

参考文献/References:

[1] YI W J, HE Q F, XIAO Y, et al. Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures[J]. ACI Structural Journal, 2008, 105(4): 433-439.
[2]王 帅.钢框架子结构抗连续倒塌性能试验研究[D].哈尔滨:哈尔滨工业大学,2015.
WANG Shuai. Experimental study on collapse resistance of steel frame structures[D]. Harbin: Harbin Institute of Technology, 2015.
[3]QIAN K, LI B. Resilience of flat slab structures in different phases of progressive collapse[J]. ACI Structural Journal, 2016, 113(3): 537-548.
[4]DANESHVAR H, DRIVER R G. Modelling benchmarks for steel shear connections in column removal scenario[J]. Journal of Building Engineering, 2018, 16: 199-212.
[5]牟成铭.多腔钢管混凝土柱-钢梁外贴盖板节点拉弯性能研究[D].哈尔滨:哈尔滨工业大学,2019.
MOU Chengming. Behavior of multi-partition steel-concrete composite column-steel beam stiffener plate connection under combined moment and tention[D]. Harbin: Harbin Institute of Technology, 2019.
[6]孟永颀,杨 锋,王逸伦,等.贯通隔板全螺栓节点抗连续倒塌分析[J].上海大学学报(自然科学版),2024,30(1):140-151.
MENG Yongqi, YANG Feng, WANG Yilun, et al. Analysis of progressive collapse resistance of through diaphragm bolted joints[J]. Journal of Shanghai University(Natural Science Edition), 2024, 30(1): 140-151.
[7]王景玄,王文琦,周 侃.钢管混凝土柱-波纹腹板H形钢梁栓焊混合加腋节点抗倒塌能力研究[J].工程力学,2023,40(9):190-202.
WANG Jingxuan, WANG Wenqi, ZHOU Kan. Research on the anti-collapse capacity of CFST column corrugated web H-shaped steel beam haunch joint with hybrid bolted welding connection[J]. Engineering Mechanics, 2023, 40(9): 190-202.
[8]王景玄,李秋颖,杨 永.考虑钢筋拉结作用的钢管混凝土节点抗连续倒塌机理分析[J].地震工程学报,2019,41(3):561-567.
WANG Jingxuan, LI Qiuying, YANG Yong. Analysis of anti-progressive collapse mechanism of concrete-filled steel tubular structure joints considering the rebar tie action[J]. China Earthquake Engineering Journal, 2019, 41(3): 561-567.
[9]郑 龙.装配式钢管混凝土组合框架抗连续倒塌性能研究[D].兰州:兰州理工大学,2022.
ZHENG Long. Progressive collapse resistance of composite frame with concrete filled steel tubular column and fabricated connection[D]. Lanzhou: Lanzhou University of Technology, 2022.
[10]沈亚军.钢管混凝土框架—拉伸支撑结构抗连续倒塌性能研究[D].兰州:兰州理工大学,2022.
SHEN Yajun. Study on progressive collapse resistance of concrete filled steel tubular frame with tensile steel brace[D]. Lanzhou: Lanzhou University of Technology, 2022.
[11]张晓明.基于组件模型的钢管混凝土节点抗连续倒塌性能分析[D].兰州:兰州理工大学,2022.
ZHANG Xiaoming. Analysis of resistance progressive collapse for CFST joint based on component model[D]. Lanzhou: Lanzhou University of Technology, 2022.
[12]Seismic evaluation and retrofit of existing buildings: ASCE/SEI 41-2017[S]. New York: American Society of Civil Engineers, 2017.
[13]Alternative path analysis and design guidelines for progressive collapse resistance: GAS2013[S]. Washington DC: General Services Administration, 2013.
[14]Design of building to resist progressive collapse: UFC4-023-03[S]. Washington DC: United States Department of Defense, 2016.
[15]徐 嫚,高 山,郭兰慧,等.连续倒塌工况下钢管混凝土柱-钢梁外伸端板连接节点受力性能研究[J].应用基础与工程科学学报,2022,30(3):633-644.
XU Man, GAO Shan, GUO Lanhui, et al. Study on the behavior of CFST column-steel beam joint with extended endplate in the scenario of progressive collapse[J]. Journal of Basic Science and Engineering, 2022, 30(3): 633-644.
[16]张祥幸.方钢管混凝土柱-H型钢梁下栓上焊节点倒塌性能研究[D].天津:河北工业大学,2020.
ZHANG Xiangxing. Study on the collapse behavior of a lower bolted connection on upper welding of square concrete-filled steel tubular column-H-shaped steel beam[D]. Tianjin: Hebei University of Technology, 2020.
[17]戎 贤,许秀晨,杜颜胜.下栓接贯通隔板-上焊接外环板节点抗连续倒塌性能数值模拟分析[J].重庆大学学报,2023,46(10):71-85.
RONG Xian, XU Xiuchen, DU Yansheng. Numerical simulation for progressive collapse behavior of the joint with a lower bolted through diaphragm and an upper welded external plate[J]. Journal of Chongqing University, 2023, 46(10): 71-85.
[18]IZZUDDIN B A, VLASSIS A G, ELGHAZOULI A Y, et al. Progressive collapse of multi-storey buildings due to sudden column loss: part I: simplified assessment framework[J]. Engineering Structures, 2008, 30(5): 1308-1318.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-07-21
基金项目:国家自然科学基金项目(52108132); 河北省自然科学基金项目(E2017202278)
作者简介:戎 贤(1965-),男,工学博士,教授,博士生导师,E-mail:xrong516@126.com。
通信作者:石晓娜(1987-),女,工学博士,正高级工程师,E-mail:andysna@163.com。
更新日期/Last Update: 2025-11-25