|本期目录/Table of Contents|

[1]任志刚,许天恩,李旗,等.钢管碱激发混凝土叠合柱黏结滑移性能研究[J].建筑科学与工程学报,2025,42(06):77-86.[doi:10.19815/j.jace.2024.02022]
 REN Zhigang,XU Tianen,LI Qi,et al.Study on bond-slip behavior of steel tube alkali-activated concrete composite columns[J].Journal of Architecture and Civil Engineering,2025,42(06):77-86.[doi:10.19815/j.jace.2024.02022]
点击复制

钢管碱激发混凝土叠合柱黏结滑移性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年06期
页码:
77-86
栏目:
建筑结构
出版日期:
2025-11-25

文章信息/Info

Title:
Study on bond-slip behavior of steel tube alkali-activated concrete composite columns
文章编号:
1673-2049(2025)06-0077-10
作者:
任志刚,许天恩,李旗,冯逸轩
(武汉理工大学 土木工程与建筑学院,湖北 武汉 430070)
Author(s):
REN Zhigang, XU Tianen, LI Qi, FENG Yixuan
(School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China)
关键词:
碱激发混凝土 叠合柱 荷载-滑移曲线 推出试验 黏结性能
Keywords:
alkali-activated concrete composite column load-slip curve push-out test bond performance
分类号:
TU398.9
DOI:
10.19815/j.jace.2024.02022
文献标志码:
A
摘要:
为研究钢管碱激发混凝土叠合柱界面黏结性能,对10个钢管碱激发混凝土叠合柱试件进行推出试验,分析钢纤维体积率、含管率、体积配箍率对钢管碱激发混凝土叠合柱界面黏结性能的影响。试验加载过程中,仔细观察试件的裂缝发展和破坏形态,并得到了试件的荷载-滑移曲线,通过对荷载-滑移曲线分析和归类,总结出具有典型形式的荷载-滑移曲线。深入分析了各变化参数对特征黏结强度的影响规律,运用灰色关联理论建立了特征黏结强度计算式。结果表明:推出试验后的试件整体较为完整,外部混凝土表面无明显裂缝,加载端面混凝土有一定损伤,荷载-滑移典型曲线分为3类; 特征黏结强度随钢纤维体积率和体积配箍率的增加而增加; 残余黏结强度随含管率的增加而减小,存在最佳截面尺寸范围,使极限黏结强度达到最大值; 灰色关联理论能够较好地反映特征黏结强度与各影响因素之间的关系,其中钢纤维体积率与极限黏结强度相关性最强,含管率与残余黏结强度相关性最强。
Abstract:
In order to study the interfacial bond performance of steel tube alkali-activated concrete composite columns, 10 specimens of steel tube alkali-activated concrete composite columns were subjected to pull-out tests to analyze the effects of steel fiber volume ratio, steel tube area ratio, and volume stirrup reinforcement ratio on the interfacial bond performance of steel tube alkali-activated concrete composite columns. During the experimental loading process, the crack development and failure mode of the specimen were carefully observed, and the load-slip curve of the specimen was obtained. By analyzing and classifying the load-slip curve, the typical forms of load-slip curves was summarized. The impact law of various changing parameters on the characteristic bond strength were analyzed in-depth, and a formula for calculating the characteristic bond strength using grey correlation theory was established. The results show that the overall integrity of the test specimen after pull-out test is relatively complete, with no obvious cracks on the external concrete surface, and some damage to the loading ends section concrete. The typical load-slip curve is divided into three categories. The characteristic bond strength increases with the increase of steel fiber volume ratio and volume stirrup reinforcement ratio. The residual bond strength decreases with the increase of steel tube area ratio, and there exists an optimal range of cross-sectional dimensions to achieve the maximum ultimate bond strength. Grey correlation theory can better reflect the relationship between characteristic bond strength and various influencing factors, among which the correlation between steel fiber volume ratio and ultimate bond strength is the strongest, and the correlation between steel tube area ratio and residual bond strength is the strongest.

参考文献/References:

[1] HAN L H, WANG Z B, XU W, et al. Behavior of concrete-encased CFST members under axial tension[J]. Journal of Structural Engineering, 2016, 142(2): 04015149.
[2]郑文忠,侯晓萌,王 英.混凝土及预应力混凝土结构抗火研究现状与展望[J].哈尔滨工业大学学报,2016,48(12):1-18.
ZHENG Wenzhong, HOU Xiaomeng, WANG Ying. Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 1-18.
[3]何越纪,张雪松,陈金平.钢筋混凝土材料及结构耐久性研究综述[J].粉煤灰综合利用,2021,35(3):83-87.
HE Yueji, ZHANG Xuesong, CHEN Jinping. Review of research on durability of reinforced concrete materials and structures[J]. Fly Ash Comprehensive Utilization, 2021, 35(3): 83-87.
[4]钢管混凝土叠合柱结构技术规程:T/CECS 188—2019[S].北京:中国建筑工业出版社,2020.
Technical specification for steel tube-reinforced concrete column structures: T/CECS 188—2019[S]. Beijing: China Architecture & Building Press, 2020.
[5]林立岩,李庆钢.钢管混凝土叠合柱的设计概念与技术经济性分析[J].建筑结构,2008,38(3):17-21,41.
LIN Liyan, LI Qinggang. Design concept and analysis of technical economy for steel tube-reinforced concrete column[J]. Building Structure, 2008, 38(3): 17-21, 41.
[6]MCLELLAN B C, WILLIAMS R P, LAY J,et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090.
[7]DAVIDOVITS J. Geopolymers of the first generation: siliface-process[J]. Geopolymer, 1988, 88(1): 49-67.
[8]PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes: a cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329.
[9]王 昕,颜碧兰,刘 晨,等.多元钙质和硅铝质工业废渣复合激发磷渣活性的研究[J].北京工业大学学报,2009,35(9):1258-1266.
WANG Xin, YAN Bilan, LIU Chen, et al. Complex calcium and silicate-aluminates industry wastes combined active phosphorous slag[J]. Journal of Beijing University of Technology, 2009, 35(9): 1258-1266.
[10]陈 明,孙振平,刘建山.磷渣活性激发方法及机理研究进展[J].材料导报,2013,27(21):112-116.
CHEN Ming, SUN Zhenping, LIU Jianshan. State of the art review on activating techniques and mechanism of phosphorus slag[J]. Materials Review, 2013, 27(21): 112-116.
[11]彭小芹,刘 朝,李 三,等.碱激发钢渣矿渣胶凝材料凝结硬化性能研究[J].湖南大学学报(自然科学版),2015,42(6):47-52.
PENG Xiaoqin, LIU Chao, LI San, et al. Research on the setting and hardening performance of alkali-activated steel slag-slag based cementitious materials[J]. Journal of Hunan University(Natural Sciences), 2015, 42(6): 47-52.
[12]徐金金,杨树桐,刘治宁.碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J].工程力学,2019,36(增1):175-183.
XU Jinjin, YANG Shutong, LIU Zhining. Study on the bond performance between CFRP bars and alkali-activated slag seawater and sea sand concrete[J]. Engineering Mechanics, 2019, 36(S1): 175-183.
[13]项 凯,潘雁翀,宋天诣.钢管混凝土叠合短柱高温后黏结滑移性能试验研究[J].建筑结构学报,2019,40(增1):149-155.
XIANG Kai, PAN Yanchong, SONG Tianyi. Experimental study on bond-slip behavior of concrete-encased concrete-filled steel tubular stub columns after high temperature[J]. Journal of Building Structures, 2019, 40(S1): 149-155.
[14]钱稼茹,赵作周,纪晓东.钢管与管外混凝土界面粘结抗剪能力试验研究[J].建筑结构,2015,45(3):12-16.
QIAN Jiaru, ZHAO Zuozhou, JI Xiaodong. Test study on shear-bond capacity of steel tube-out of tube concrete interface[J]. Building Structure, 2015, 45(3): 12-16.
[15]混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019.
Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019.
[16]金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021.
Metallic materials — tensile testing: part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021.
[17]张凤维.钢筋与混凝土高温粘结性能研究[D].长沙:中南大学,2008.
ZHANG Fengwei. Study on bond performance between rebar and concrete under high temperature[D]. Changsha: Central South University, 2008.
[18]傅 立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
FU Li. Grey system theory and its application[M]. Beijing: Scientific and Technical Documents Publishing House, 1992.
[19]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,1987.
DENG Julong. Basic methods of grey system[M]. Wuhan: Huazhong University of Science and Technology Press, 1987.
[20]周秀文.灰色关联度的研究与应用[D].长春:吉林大学,2007.
ZHOU Xiuwen. The study on the grey relational degree and its application[D]. Changchun: Jilin University, 2007.
[21]杨 磊.型钢-ECC粘结滑移机理试验研究及有限元分析[D].西安:长安大学,2021.
YANG Lei. Experimental investigation and finite element analysis on bond slip mechanism between shape steel and ECC[D]. Xi'an: Chang'an University, 2021.
[22]陈宗平,应武挡.型钢高强混凝土界面黏结滑移推出试验及其本构关系研究[J].建筑结构学报,2016,37(2):150-157.
CHEN Zongping, YING Wudang. Push-out test on interface bond behavior between shape steel and high-strength concrete and interfacial bond-slip constitutive relation[J]. Journal of Building Structures, 2016, 37(2): 150-157.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-02-11
基金项目:武汉理工大学三亚科教创新园开放基金项目(2022KF001)
作者简介:任志刚(1974-),男,工学博士,教授,博士生导师,E-mail:whut.ren@163.com。
更新日期/Last Update: 2025-11-25