|本期目录/Table of Contents|

[1]武晓东,肖顺,章刘洋,等.陆上风机混凝土塔筒基础结构受力机理研究[J].建筑科学与工程学报,2025,42(06):98-110.[doi:10.19815/j.jace.2024.05087]
 WU Xiaodong,XIAO Shun,ZHANG Liuyang,et al.Research on stress mechanism of concrete tower foundation structure for onshore wind turbine[J].Journal of Architecture and Civil Engineering,2025,42(06):98-110.[doi:10.19815/j.jace.2024.05087]
点击复制

陆上风机混凝土塔筒基础结构受力机理研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年06期
页码:
98-110
栏目:
建筑结构
出版日期:
2025-11-25

文章信息/Info

Title:
Research on stress mechanism of concrete tower foundation structure for onshore wind turbine
文章编号:
1673-2049(2025)06-0098-13
作者:
武晓东1,肖顺2,章刘洋1,章荣国1,方浩1
(1. 上海电力设计院有限公司,上海 200025; 2. 上海市建筑科学研究院有限公司 上海市工程结构安全重点实验室,上海 200032)
Author(s):
WU Xiaodong1, XIAO Shun2, ZHANG Liuyang1, ZHANG Rongguo1, FANG Hao1
(1.POWERCHINA Shanghai Electric Power Engineering Co., Ltd., Shanghai 200025, China; 2. Shanghai Key Laboratory of Engineering Structure Safety, Shanghai Research Institute of Building Sciences Co., Ltd., Shanghai 200032, China)
关键词:
混塔基础 基床系数 基础-弹簧模型 基础-反力模型 有限元方法 拉-弯截面
Keywords:
concrete tower foundation subgrade reaction coefficient foundation-spring model foundation-reaction model finite element method tension-bending section
分类号:
TU476
DOI:
10.19815/j.jace.2024.05087
文献标志码:
A
摘要:
针对陆上风机混凝土塔筒基础(简称“混塔基础”)结构因预应力锚固要求而在基础中心设置空腔造成基础结构受力复杂,以及规范对此覆盖不够完善的问题,提出了基于有限元模型从内力视角开展混塔基础关键截面受力机理的分析方法。建立了两类有限元分析模型,一类是基于基床系数法的有限元基础-弹簧模型,另一类是基于规范基底线性反力假定的基础-反力模型。通过两类模型分析结果的对比,验证基础-弹簧模型的合理性。结果表明:随着基床系数的增加,基底脱开区由弓形向扇形转变,基底最大反力位置向基础中心移动,基础关键截面内力呈减小趋势; 基础外环板、空腔底板、环壁以及牛腿各截面除承受弯矩外,还承受轴向力,其中外环板环向截面、空腔底板径向和环向截面、环壁和牛腿环向截面均为拉-弯截面且拉力水平较高,对混凝土结构不利; 现有简化计算方法无法考虑截面轴力,致使拉-弯截面配筋不足,需引起工程界重视。
Abstract:
Regarding the problem that setting of a cavity at the center of concrete tower foundation for onshore wind turbines(referred to as “concrete tower foundation”)due to the requirement of prestressed anchoring leads to complex stress in the foundation structure, and relevant specifications had insufficient coverage on the issue, an analytical method for studying the stress mechanism of key sections of concrete tower foundation from the perspective of internal forces based on finite element model was proposed. Two types of finite element analysis models were established, one was the finite element foundation-spring model based on the subgrade reaction coefficient method, and the other was the foundation-reaction model based on the assumption of linear base reaction specified in the specifications. Through the comparison of the analysis results of the two types of models, the rationality of foundation-spring model was verified. The results show that as the subgrade reaction coefficient increases, the base separation zone transforms from a bow shape to a fan shape, the position of the maximum base reaction shifts toward the center of foundation, and the internal forces of the key sections of foundation show a decreasing trend. Each section of the foundation's outer ring slab, cavity bottom slab, ring wall, and corbel bears axial force in addition to bending moment. Among them, the circumferential section of the outer ring slab, the radial and circumferential sections of cavity bottom slab, and the circumferential sections of ring wall and corbel are all tension-bending sections with relatively high tension levels, which is unfavorable to concrete structure. The existing simplified calculation methods cannot consider the axial force of sections, resulting in insufficient reinforcement in tension-bending sections, which should be taken seriously by the engineering community.

参考文献/References:

[1] 刘骁繁,林禹轩,刘志伟,等.在建输电铁塔-悬浮抱杆耦合体系动力特性分析[J].建筑科学与工程学报,2025,42(1):121-130.
LIU Xiaofan, LIN Yuxuan, LIU Zhiwei, et al. Analysis of dynamic characteristics of transmission tower-suspension holding rod coupling system under construction[J]. Journal of Architecture and Civil Engineering, 2025, 42(1): 121-130.
[2]LAGO B D, FLESSATI L, MARVEGGIO P, et al. Experimental tests on shallow foundations of onshore wind turbine towers[J]. Structural Concrete, 2022, 23(5): 2986-3006.
[3]王斯伟,白宝华,潘启科,等.圆形扩展式风机基础体型优化设计研究[J].云南电力技术,2019,47(5):86-89.
WANG Siwei, BAI Baohua, PAN Qike, et al. Research on optimization design of basic shape of circular extended wind turbine foundation[J]. Yunnan Electric Power, 2019, 47(5): 86-89.
[4]张浦阳,曾 斌,丁红岩,等.陆上风机圆形扩展基础底板内力及脱开规律研究[J].建筑结构,2020,50(3):129-136.
ZHANG Puyang, ZENG Bin, DING Hongyan, et al. Analysis of internal force and disengagement law for circular expansion foundation plate of onshore wind turbine[J]. Building Structure, 2020, 50(3): 129-136.
[5]郑 阳.圆形扩展式风机基础钢筋设计优化分析[J].南方能源建设,2022,9(增1):76-82.
ZHENG Yang. Design optimization for the reinforcement of wind turbine foundation[J]. Southern Energy Construction, 2022, 9(S1): 76-82.
[6]樊晨阳.钢混塔筒风机基础数值模拟分析及结构优化研究[D].武汉:华中科技大学,2022.
FAN Chenyang. Numerical simulation analysis and structural optimization of steel-concrete tower wind turbine foundation[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[7]朱 岩,卢红前,吉春明,等.钢混塔筒风机基础的局部抗冲切设计[J].武汉大学学报(工学版),2020,53(增1):153-157.
ZHU Yan, LU Hongqian, JI Chunming, et al. Local punching resistance design of steel concrete tower turbine foundation[J]. Engineering Journal of Wuhan University, 2020, 53(S1): 153-157.
[8]宋 宁,赵新宏,潘启科,等.混凝土塔筒风机基础有限元模拟计算及结构优化研究[J].科学技术创新,2025(10):121-125.
SONG Ning, ZHAO Xinhong, PAN Qike, et al. Finite element simulation calculation and structural optimization research on the foundation of concrete tower fan[J]. Scientific and Technological Innovation, 2025(10): 121-125.
[9]YANG C, HE W J, ZHANG J, et al. Internal force and damage analysis of foundation of steel — concrete wind turbine tower[J]. Proceedings of the Institution of Civil Engineers — Structures and Buildings, 2024,177(10):930-940.
[10]基坑工程技术标准: DJ/TJ 08-61—2018[S]. 上海: 同济大学出版社, 2018.
Technical code for excavation engineering: DJ/TJ 08-61—2018[S]. Shanghai: Tongji University Press, 2018.
[11]地铁设计规范:GB 50157—2013[S].北京:中国建筑工业出版社,2014.
Code for design of metro: GB 50157—2013[S]. Beijing: China Architecture & Building Press, 2014.
[12]陆上风电场工程风电机组基础设计规范:NB/T 10311—2019[S].北京:中国电力出版社,2020.
Code for design of wind turbine foundations for onshore wind power projects: NB/T 10311—2019[S]. Beijing: China Electric Power Press, 2020.
[13]徐芝纶.弹性力学(下册)[M].5版.北京:高等教育出版社,2016.
XU Zhilun. Elasticity(volume II)[M]. 5th ed. Beijing: Higher Education Press, 2016.
[14]混凝土结构设计规范:GB 50010—2002[S].北京:中国建筑工业出版社,2004.
Code for design of concrete structures: GB 50010—2002[S]. Beijing: China Architecture & Building Press, 2004.
[15]潘瑞林,易 鑫,孙宝忠.地铁勘察中综合方法确定基床系数[J].铁道勘察,2013,39(3):22-25.
PAN Ruilin, YI Xin, SUN Baozhong.Comprehensive method determining the coefficient of subgrade reaction in metro investigation[J]. Railway Investigation and Surveying, 2013, 39(3): 22-25.
[16]刘志刚.不同岩土试验及原位测试方法在地铁勘察中的应用[J].城市勘测,2017(5):172-176.
LIU Zhigang. Different geotechnical and in-situ test application in metro investigation[J].Urban Geotechnical Investigation & Surveying, 2017(5): 172-176.
[17]高层建筑岩土工程勘察规程:JGJ 72—2004[S].北京:中国建筑工业出版社,2004.
Specification for geotechnical investigation of tall buildings: JGJ 72—2004[S]. Beijing: China Architecture & Building Press, 2004.
[18]陆上风电场工程地质勘察规范:NB/T 31030—2022[S].北京:中国水利水电出版社,2022.
Code for engineering geological investigation of onshore wind power projects: NB/T 31030—2022[S]. Beijing: China Water & Power Press, 2022.
[19]城市轨道交通岩土工程勘察规范:GB 50307—2012[S].北京:中国计划出版社,2012.
Code for geotechnical investigations of urban rail transit: GB 50307—2012[S]. Beijing: China Planning Press, 2012.
[20]刘梅梅,杨 敏,王海军.陆上风力机圆形扩展基础基底反力及冲切特性研究[J].太阳能学报,2015,36(5):1130-1135.
LIU Meimei, YANG Min, WANG Haijun. Study on subgrade reaction and punching of circular spread foundation for onshore wind turbines[J]. Acta Energiae Solaris Sinica, 2015, 36(5): 1130-1135.
[21]李 征,黄 宜,黄冬平,等.预制装配梁板式风力机基础整体性分析[J].太阳能学报,2023,44(10):427-436.
LI Zheng, HUANG Yi, HUANG Dongping, et al. Integral analysis of prefabricated beam-slab wind turbine foundation[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 427-436.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-21
基金项目:中国电力建设股份有限公司科研项目(DJ-ZDXM-2021-14); 上海市青年科技启明星计划资助项目(22QB1403400)
作者简介:武晓东(1986-),男,工学博士,高级工程师,E-mail:wuxd@sepd.com.cn。
更新日期/Last Update: 2025-11-25