|本期目录/Table of Contents|

[1]董旭光,王振波,吕江飞,等.饱和冻土-钢界面三轴剪切试验及本构模型[J].建筑科学与工程学报,2025,42(06):199-210.[doi:10.19815/j.jace.2025.03091]
 DONG Xuguang,WANG Zhenbo,LYU Jiangfei,et al.Triaxial shear test and constitutive model of saturated frozen soil-steel interface[J].Journal of Architecture and Civil Engineering,2025,42(06):199-210.[doi:10.19815/j.jace.2025.03091]
点击复制

饱和冻土-钢界面三轴剪切试验及本构模型(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年06期
页码:
199-210
栏目:
岩土工程
出版日期:
2025-11-25

文章信息/Info

Title:
Triaxial shear test and constitutive model of saturated frozen soil-steel interface
文章编号:
1673-2049(2025)06-0199-12
作者:
董旭光,王振波,吕江飞,唐少容
(宁夏大学 土木与水利工程学院,宁夏 银川 750021)
Author(s):
DONG Xuguang, WANG Zhenbo, LYU Jiangfei, TANG Shaorong
(School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China)
关键词:
冻土-钢界面 二元介质模型 三轴剪切试验 粗糙度 本构模型
Keywords:
frozen soil-steel interface binary media model triaxial shear test roughness constitutive model
分类号:
TU445
DOI:
10.19815/j.jace.2025.03091
文献标志码:
A
摘要:
为揭示三维应力状态下冻土与结构物界面的力学特性及其影响机制,预制含一定倾角斜面的钢块与饱和土组合为圆柱试样,利用温控三轴仪对试样进行不同应力路径的加载试验,探究界面粗糙度、温度和围压对试样界面剪切力学特性的影响机制; 通过试验应力-位移曲线和考虑粗糙度影响的饱和冻土与钢界面本构模型拟合对比,验证模型的合理性。结果表明:剪切破坏主要发生在界面处,且剪应力-剪切位移曲线表现出应变软化的特征; 界面抗剪强度随粗糙度和温度线性增加,温度对峰值强度的影响远大于残余强度; 温度为-2~-5 ℃时粗糙度对残余强度的影响显著,粗糙度越大,残余强度越大; 温度为-8~-11 ℃时,粗糙度对残余强度影响不大; 试验结果可为多年冻土区桩基和锚固等工程建设中结构与土的相互作用提供一定的参考。
Abstract:
In order to reveal the mechanical characteristics and underlying influencing mechanisms of the frozen soil-structure interface under three-dimensional stress states. Cylindrical specimens were prepared by combining preformed steel blocks with an inclined plane and saturated soil. Using a temperature-controlled triaxial apparatus, specimens were subjected to various stress path loading tests. The influence mechanisms of interface roughness, temperature, and confining pressure on the interfacial shear mechanical properties were investigated. The validity of the model was verified by comparing the experimental stress-displacement curve with the constitutive model of saturated frozen soil-steel interface considering the influence of roughness. The results show that shear failure primarily occurs at the interface, and the shear stress-shear displacement curve exhibits strain softening characteristics. The shear strength of the interface increases linearly with both roughness and temperature. The effect of temperature on peak strength is significantly greater than that of residual strength. When the temperature ranges from -2 ℃ to -5 ℃, the influence of roughness on residual strength becomes pronounced, where higher roughness corresponds to greater residual strength. When the temperature ranges from -8 ℃ to -11 ℃, the influence of roughness on residual strength diminishes. The findings can provide valuable reference for engineering projects involving soil-structure interaction in frozen soil regions, such as pile foundations and anchor systems.

参考文献/References:

[1] GUO Z Y, XU X T, WANG Y T, et al. Significance analysis of the factors influencing the strength of the frozen soil-structure interface and their interactions in different phase transition zones[J]. Case Studies in Thermal Engineering, 2023, 50: 103475.
[2]HE P F, MU Y H, YANG Z H, et al. Freeze-thaw cycling impact on the shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2020, 173: 103024.
[3]WANG T L, WANG H H, HU T F, et al. Experimental study on the mechanical properties of soil-structure interface under frozen conditions using an improved roughness algorithm[J]. Cold Regions Science and Technology, 2019, 158: 62-68.
[4]王伯昕,刘佳奇,王 清,等.冻融循环条件下粉质黏土-混凝土界面细观损伤及宏观剪切性能研究[J].岩石力学与工程学报,2023,42(增1):3792-3800.
WANG Boxin, LIU Jiaqi, WANG Qing, et al. Study on meso-damage and macro-shear properties of silty clay-concrete interface under freeze-thaw cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3792-3800.
[5]张 琪,张建明,张 斌,等.高温冻土-现浇混凝土接触面影响因素及本构模型[J].中南大学学报(自然科学版),2022,53(8):3021-3030.
ZHANG Qi, ZHANG Jianming, ZHANG Bin, et al. Influencing factors and constitutive model of interface between warm frozen soil and cast-in-place concrete[J]. Journal of Central South University(Science and Technology), 2022, 53(8): 3021-3030.
[6]HE P F, HOU G L, CAO H T, et al. The influence of geosynthetic properties on their shear behaviors at the interface with frozen soil[J]. Geotextiles and Geomembranes, 2025, 53(2): 497-509.
[7]FANG R C, WANG B X, PAN J J, et al. Effect of concrete surface roughness on shear strength of frozen soil-concrete interface based on 3D printing technology[J]. Construction and Building Materials, 2023, 366: 130158.
[8]张 航,曹海涛,何鹏飞,等.湿干循环作用对冻土-复合土工布界面常法向应力剪切特性的影响试验研究[J].冰川冻土,2024,46(1):185-198.
ZHANG Hang, CAO Haitao, HE Pengfei, et al. Experimental study on the effect of wet-dry cycles on constant normal stress shear characteristics of frozen soil-composite geotextile interface[J]. Journal of Glaciology and Geocryology, 2024, 46(1): 185-198.
[9]万旭升,周 浩,路建国,等.盐渍冻土-混凝土接触面剪切特性试验研究[J].工程地质学报,2025,33(4):1553-1565.
WAN Xusheng, ZHOU Hao, LU Jianguo, et al. Experimental study on shear characteristics of saline frozen soil-concrete interface[J]. Journal of Engineering Geology, 2025, 33(4): 1553-1565.
[10]CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673.
[11]ALDAEEF A A, RAYHANI M T. Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature[J]. Soils and Foundations, 2019, 59(6): 2110-2124.
[12]ALDAEEF A A, RAYHANI M T. Pile-soil interface characteristics in ice-poor frozen ground under varying exposure temperature[J]. Cold Regions Science and Technology, 2021, 191: 103377.
[13]HE P F, MU Y H, MA W, et al. Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests[J]. Advances in Climate Change Research, 2021, 12(1): 83-94.
[14]石泉彬,杨 平.冻结粉细砂与钢板接触面剪切统计损伤模型构建[J].铁道科学与工程学报,2021,18(10):2591-2599.
SHI Quanbin, YANG Ping. Construction of statistical shear damage model at the interface between frozen fine sand and steel plate[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2591-2599.
[15]SHI S, ZHANG F, FENG D C, et al. Shear behavior of ice-frozen soil interface: experiments and elastoplastic modeling[J]. Geomechanics for Energy and the Environment, 2023, 34: 100447.
[16]SUN T C, GAO X J, LIAO Y M, et al. Experimental study on adfreezing strength at the interface between silt and concrete[J]. Cold Regions Science and Technology, 2021, 190: 103346.
[17]FENG Y Z, XUE K, HU J, et al. A binary medium model of frozen soil-structure interface considering the roughness effect[J]. Cold Regions Science and Technology, 2024, 218: 104092.
[18]李怀鑫,晏长根,石玉玲,等.基于损伤耦合演化过程的黏土-结构物界面统计损伤本构模型[J].中南大学学报(自然科学版),2024,55(6):2260-2272.
LI Huaixin, YAN Changgen, SHI Yuling, et al. A statistical damage constitutive model for clay-concrete interface based on damage coupling evolution process[J]. Journal of Central South University(Science and Technology), 2024, 55(6): 2260-2272.
[19]MEEHAN C L, TIWARI B, BRANDON T L, et al. Triaxial shear testing of polished slickensided surfaces[J]. Landslides, 2011, 8(4): 449-458.
[20]REILLY C C, ORR T L L. Physical modelling of the effect of lubricants in pipe jacking[J]. Tunnelling and Underground Space Technology, 2017, 63: 44-53.
[21]刘世奥,廖晨聪,陈锦剑,等.饱和砂土-结构物接触面强度特性的三轴试验方法[J].上海交通大学学报,2021,55(11):1371-1379.
LIU Shiao, LIAO Chencong, CHEN Jinjian, et al. Strength properties of saturated sand-structure interface by triaxial test method[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1371-1379.
[22]苏新斌,廖晨聪,刘世奥,等.基于预制滑动面的饱和黏土-结构物界面强度特性三轴试验研究[J].岩土力学,2022,43(10):2852-2860.
SU Xinbin, LIAO Chencong, LIU Shiao, et al. Triaxial test for strength characteristics of saturated clay-structure interface based on prefabricated sliding surface[J]. Rock and Soil Mechanics, 2022, 43(10): 2852-2860.
[23]土工试验方法标准:GB/T 50123—2019[S].北京:中国计划出版社,2019.
Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.
[24]人工冻土物理力学性能试验:MT/T593—2011[S].北京:煤炭行业煤矿专用设备标准化技术委员会,2011.
Artificial frozen soil physics mechanics performance test: MT/T593—2011[S]. Beijing: Coal Industry Coal Mine Special Equipment Standardization Technical Committee, 2011.
[25]常 键.冻结砂-混凝土接触面剪切特性及边界面本构模型研究[D].北京:北京交通大学,2023.
CHANG Jian. Shear behavior and bounding surface constitutive model of frozen sand-concrete interface[D]. Beijing: Beijing Jiaotong University, 2023.
[26]沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002(4):1-6.
SHEN Zhujiang. Breakage mechanics and double-medium model for geological materials[J]. Hydro-science and Engineering, 2002(4): 1-6.
[27]刘恩龙.岩土破损力学:结构块破损机制与二元介质模型[J].岩土力学,2010,31(增1):13-22,137.
LIU Enlong. Breakage mechanics for geomaterials: breakage mechanism of structural blocks and binary-medium model[J]. Rock and Soil Mechanics, 2010, 31(S1): 13-22, 137.
[28]刘恩龙,陈铁林.岩土破损力学:二元介质本构模型[M].北京:科学出版社,2024.
LIU Enlong, CHEN Tielin. Rock and soil failure mechanics: binary medium constitutive model[M]. Beijing: Science Press, 2024.
[29]GHAZAVI BAGHINI E, TOUFIGH M M, TOUFIGH V. Analysis of pile foundations using natural element method with disturbed state concept[J]. Computers and Geotechnics, 2018, 96: 178-188.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2025-03-05
基金项目:国家自然科学基金项目(52368050,51808302); 宁夏自然科学基金项目(2024AAC03126)
作者简介:董旭光(1987-),男,工学博士,教授,博士生导师,E-mail:dxguang568@163.com。
更新日期/Last Update: 2025-11-25