|本期目录/Table of Contents|

[1]赖秀英,陈宝春.钢管混凝土拱桥收缩次内力计算[J].建筑科学与工程学报,2013,30(03):120-126.
 LAI Xiu-ying,CHEN Bao-chun.Calculation of Shrinkage Secondary Internal Force of CFST Arch Bridge[J].Journal of Architecture and Civil Engineering,2013,30(03):120-126.
点击复制

钢管混凝土拱桥收缩次内力计算(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
30卷
期数:
2013年03期
页码:
120-126
栏目:
出版日期:
2013-09-30

文章信息/Info

Title:
Calculation of Shrinkage Secondary Internal Force of CFST Arch Bridge
作者:
赖秀英陈宝春
福州大学 土木工程学院
Author(s):
LAI Xiu-ying, CHEN Bao-chun
School of Civil Engineering, Fuzhou University
关键词:
钢管混凝土拱桥收缩次内力解析法有限元法
Keywords:
concrete-filled steel tubular arch bridge shrinkage secondary internal force analytical method finite element method
分类号:
-
DOI:
-
文献标志码:
A
摘要:
针对管内混凝土收缩会在钢管混凝土超静定拱中产生次内力,根据钢管混凝土拱的结构特性,提出了2种钢管混凝土拱收缩次内力计算方法——解析法和有限元法,并采用这2种计算方法对9个钢管混凝土拱桥实例进行分析。结果表明:2种方法均可用于计算钢管混凝土拱桥的收缩次内力,但采用等效降温15 ℃~20 ℃的解析法计算得到的收缩次内力较采用有限元法直接计算的收缩次内力大了50%以上;若采用等效降温的解析法计算,等效降温值还有待于进一步研究。
Abstract:
Aimed at the shrinkage of core concrete causing secondary internal force in the concretefilled steel tubular (CFST) fixed arch, according to the structural properties of CFST arch, two methods were proposed to calculate the shrinkage secondary internal force, including analytical method and finite element method. The two methods were used to calculate the shrinkage secondary internal force of nine CFST arch bridges. The results show that both the two methods can be used to calculate the shrinkage secondary internal force of CFST arch bridge. But the results from the equivalent decreasing temperature of 15 ℃20 ℃ in analytical method are larger more 50% than the results calculated directly from the finite element method. If the analytical method of equivalent decreasing temperature will be used, the equivalent decreasing temperature values maybe research in the future.

参考文献/References:

相似文献/References:

[1]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(03):103.
[2]朱 鹏,李宗阳,屈文俊,等.掺稻壳灰活性粉末混凝土配合比试验[J].建筑科学与工程学报,2015,32(06):58.
 ZHU Peng,LI Zong-yang,QU Wen-jun,et al.Experiment on Mix Proportion of Reactive Powder Concrete with Rice Husk Ash[J].Journal of Architecture and Civil Engineering,2015,32(03):58.
[3]马丽娜,贡金鑫,赵艳华.高性能混凝土约束收缩对氯离子扩散的影响[J].建筑科学与工程学报,2017,34(06):85.
 MA Li-na,GONG Jin-xin,ZHAO Yan-hua.Influence of Constrained Shrinkage Cracking on Chloride Ion Diffusivity of High Performance Concrete[J].Journal of Architecture and Civil Engineering,2017,34(03):85.
[4]王元清,张勇,石永久,等.吊索与钢管混凝土拱桥新型节点承载性能分析[J].建筑科学与工程学报,2005,22(03):55.
 WANG Yuan-qing,ZHANG Yong,SHI Yong-jiu,et al.Analysis of load capacity of new-style joints between cable and concrete-filled steel tube arch bridge[J].Journal of Architecture and Civil Engineering,2005,22(03):55.
[5]彭益华,毛立敏.半漂浮式主梁钢管混凝土拱桥黏滞阻尼器减震设计[J].建筑科学与工程学报,2022,39(02):36.[doi:10.19815/j.jace.2021.04060]
 PENG Yi-hua,MAO Li-min.Damping Design of Semi-floating Main Girder Concrete-filled Steel Tubular Arch Bridge with Viscous Damper[J].Journal of Architecture and Civil Engineering,2022,39(03):36.[doi:10.19815/j.jace.2021.04060]

备注/Memo

备注/Memo:
更新日期/Last Update: 2014-12-18