|本期目录/Table of Contents|

[1]王 莹,王 盼.油罐车火灾下大跨径双层钢桁梁悬索桥高温 力学性能[J].建筑科学与工程学报,2019,36(03):91-100.
 WANG Ying,WANG Pan.High Temperature Mechanical Properties of Long-span Double-deck Steel Truss Beam Suspension Bridge Under Tanker Fire[J].Journal of Architecture and Civil Engineering,2019,36(03):91-100.
点击复制

油罐车火灾下大跨径双层钢桁梁悬索桥高温 力学性能(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年03期
页码:
91-100
栏目:
出版日期:
2019-05-22

文章信息/Info

Title:
High Temperature Mechanical Properties of Long-span Double-deck Steel Truss Beam Suspension Bridge Under Tanker Fire
文章编号:
1673-2049(2019)03-0091-10
作者:
王 莹王 盼
(湖北省城建设计院股份有限公司,湖北 武汉 430051)
Author(s):
WANG Ying WANG Pan
(Hubei Urban Construction Design Institute Co.,Ltd., Wuhan 430051, Hubei, China)
关键词:
双层公路悬索桥 油罐车火灾 热释放率 温度场 破坏时间 屈曲失稳 救援时间
Keywords:
double-deck highway suspension bridge tanker fire heat release rate temperature field damage time buckling instability rescue time
分类号:
TU312
DOI:
-
文献标志码:
A
摘要:
为了确定大跨径双层钢桁梁公路悬索桥油罐车燃烧下的损伤破坏情况,以武汉杨泗港长江大桥为背景,利用火灾动力学软件FDS模拟桥梁上7种不同火灾燃烧场景,以此确定出桥梁最不利油罐车火灾热释放率函数增长模型及规模。建立双层公路悬索桥三维空间热分析模型,通过热分析确定油罐车在桥梁不同部位发生火灾时其三维空间瞬态温度场分布规律。通过热-结构耦合分析,掌握双层钢桁梁悬索桥吊索、加劲梁、桁架杆高温力学性能时变特征。结果表明:恒载+活载工况作用下,一辆油罐车在桥梁主跨跨中上层最外车道发生火灾36 min时,吊索温度达到900 ℃以上,吊索应力增大到362.4 MPa,达到高温下抗拉强度,此时吊索发生断裂破坏,吊索的破坏主要是由于高温下的抗拉强度退化造成,此场景下抗火救援的最佳时间在16 min内; 一辆油罐车在桥梁主跨跨中下层非机动车道发生火灾43 min时,上层钢桁梁横梁腹板的临界屈曲应力系数降低到了1以下,上层钢桁梁火灾下率先会发生局部屈曲失稳而不是强度或位移破坏,此时抗火救援的最佳时间在20 min内。
Abstract:
In order to acquire the failure characteristics of long-span double-deck steel truss girder suspension bridge under tanker fire, Yangsigang Yangtze River Bridge in Wuhan was taken as an example, and the fire dynamics software FDS was used to simulate seven different fire burning scenarios on the bridge, so as to determine the most unfavorable growth model and scale of the bridge tanker fire heat release rate function. A three-dimensional spatial thermal analysis model of double-deck highway suspension bridge was established. The three-dimensional transient temperature field distribution laws when tanker fire occurred in different parts of bridge were confirmed though thermal analysis. Through thermal-structure coupling analysis, the time-varying characteristics of high temperature mechanical properties of suspension cables, stiffening beams and truss bars of double-deck steel truss suspension bridge were mastered. The results show that when a tanker fire happens in the upper outer lane of midspan of the main span under dead load and live load with 36 min, the temperature of sling reaches 900 ℃, and sling stress increases to 362.4 MPa which is equal to sling tensile strength at high temperature. At this time, the sling breaks, and the damage of the sling is mainly due to the degradation of tensile strength at high temperature. The best time for fire rescue in this scenario is within 16 min. When a tanker fire happens in the lower non-motorized lane of midspan of the main span with 43 min, the critical buckling stress coefficient of the upper beam web was reduces below 1, and the failure characteristics of the bridge was local buckling instability rather than strength or displacement failure. The best fire rescue time should be within 20 min under this scenario.

参考文献/References:


[1] KODUR V,GU L,GARLOCK M.Review and Assessment of Fire Hazard in Bridges[J].Transportation Research Record,2010,2172:23-29.
[2]田 伟.武汉鹦鹉洲长江大桥汽车燃烧下高温力学性能与风险防范措施研究[D].武汉:武汉理工大学,2014.
TIAN Wei.Mechanical Properties Under High Temperature and Risk Prevention Measures for Wuhan Yingwuzhou Yangtze River Bridge Under Vehicle Fire[D].Wuhan:Wuhan University of Technology,2014.
[3]KODUR V,AZIZ E,DWAIKAT M.Evaluating Fire Resistance of Steel Girders in Bridges[J].Journal of Bridge Engineering,2013,18(7):633-643.
[4]ALOS-MOYA J,PAYA-ZAFORTEZA I,GARLOCK M E M,et al.Analysis of a Bridge Failure Due to Fire Using Computational Fluid Dynamics and Finite Element Models[J].Engineering Structures,2014,68:96-110.
[5]PERIS-SAYOL G,PAYA-ZAFORTEZA I,ALOS-MOYA J,et al.Analysis of the Influence of Geometric,Modeling and Environmental Parameters on the Fire Response of Steel Bridges Subjected to Realistic Fire Scenarios[J].Computers & Structures,2015,158:333-345.
[6]AZIZ E M,KODUR V K,GLASSMAN J D,et al.Behavior of Steel Bridge Girders Under Fire Conditions[J].Journal of Constructional Steel Research,2015,106:11-22.
[7]刘世忠,马朝旭,李丽园,等.火灾下PC箱梁的损伤评估与加固设计[J].桥梁建设,2014,44(6):94-100.
LIU Shi-zhong,MA Chao-xu,LI Li-yuan,et al.Assessment and Strengthening Design of PC Box Girder Subjected to Fire Damage[J].Bridge Construction,2014,44(6):94-100.
[8]熊 伟,李耀庄,严加宝.火灾作用下钢筋混凝土梁温度场数值模拟及试验验证[J].中南大学学报:自然科学版,2012,43(7):2838-2843.
XIONG Wei,LI Yao-zhuang,YAN Jia-bao.Numeral Modeling and Experimental Verification on Heat Transfer of RC Beams Under Elevated Temperature[J].Journal of Central South University:Science and Technology,2012,43(7):2838-2843.
[9]LIU F T,WU B,WEI D M.Failure Modes of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet in Fire[J].Fire Safety Journal,2009,44(7):941-950.
[10]INGASON H.Design Fires in Tunnels[C]//MOLAG M.Proceedings of the Second International Symposium Safe & Reliable Tunnels,Innovative European Achievements.Lausanne:IEA,2006:1-11.
[11]闫治国,朱合华.火灾时隧道衬砌结构内温度场分布规律试验[J].同济大学学报:自然科学版,2012,40(2):167-172.
YAN Zhi-guo,ZHU He-hua.Experimental Study on Temperature Field Distribution of Tunnel Lining Structure in Fire Accidents[J].Journal of Tongji University:Natural Science,2012,40(2):167-172.
[12]张昊宇,郑文忠.1860级低松弛钢绞线高温下力学性能[J].哈尔滨工业大学学报,2007,39(6):861-865.
ZHANG Hao-yu,ZHENG Wen-zhong.Mechanical Property of Steel Strand at High Temperature[J].Journal of Harbin Institute of Technology,2007,39(6):861-865.
[13]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101.
YAN Zhi-guo,YANG Qi-xin,ZHU He-hua.An Experimental Study of Fire Hazard at the Qinling Highway Tunnel[J].China Civil Engineering Journal,2005,38(11):96-101.
[14]BENNETTS I,MOINUDDIN K.Evaluation of the Impact of Potential Fire Scenarios on Structural Elements of a Cable-stayed Bridge[J].Journal of Fire Protection Engineering,2009,19(2):85-106.
[15]施键梅,毛小勇,刘鑫峰.火灾高温下隧道衬砌结构的变形性能研究[J].防灾减灾工程学报,2015,35(6):785-791.
SHI Jian-mei,MAO Xiao-yong,LIU Xin-feng.Research on Deformation Performance of Tunnel Lining Structures Under High Temperature of Fire[J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(6):785-791.
[16]吕学涛,杨 华,张素梅.三面受火的方钢管混凝土柱耐火极限[J].自然灾害学报,2012,21(3):198-203.
LU Xue-tao,YANG Hua,ZHANG Su-mei.Fire Resistance Limit of Concrete-filled Square Steel Tube Columns Exposed to Three-faced Fire[J].Journal of Natural Disasters,2012,21(3):198-203.
[17]XU M C,SOARES C G.Assessment of Residual Ultimate Strength for Wide Dented Stiffened Panels Subjected to Compressive Loads[J].Engineering Structures,2013,49:316-328.
[18]KHEDMATI M R,ZAREEI M K,RIGO P.Sensitivity Analysis on the Elastic Buckling and Ultimate Strength of Continuous Stiffened Aluminium Plates Under Combined In-plane Compression and Lateral Pressure[J].Thin-walled Structures,2009,47(11):1232-1245.
[19]GALEA Y,MARTIN P O.Longitudinally Stiffened Plates in Eurocode 3:Calculation of the Global Critical Buckling Stress[J].Journal of Constructional Steel Research,2010,66(11):1345-1353.
[20]RAHBAR-RANJI A.Elastic Buckling Analysis of Longitudinally Stiffened Plates with Flat-bar Stiffeners[J].Ocean Engineering,2013,58:48-59.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-09-24
基金项目:国家自然科学基金项目(51378405); 武汉市科技攻关计划项目(2014010101010024)
作者简介:王 莹(1987-),男,湖北襄阳人,工程师,工学博士,E-mail:wyisbest@163.com。
更新日期/Last Update: 2019-05-23