|本期目录/Table of Contents|

[1]屈文俊,刘传名,朱 鹏.加筋混凝土梁延性系数计算方法[J].建筑科学与工程学报,2019,36(06):10-17.
 QU Wen-jun,LIU Chuan-ming,ZHU Peng.Calculation Method for Ductility Coefficient of Reinforced Concrete Beams[J].Journal of Architecture and Civil Engineering,2019,36(06):10-17.
点击复制

加筋混凝土梁延性系数计算方法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年06期
页码:
10-17
栏目:
出版日期:
2019-11-25

文章信息/Info

Title:
Calculation Method for Ductility Coefficient of Reinforced Concrete Beams
文章编号:
1673-2049(2019)06-0010-08
作者:
屈文俊,刘传名,朱 鹏
(同济大学 土木工程学院,上海 200092)
Author(s):
QU Wen-jun, LIU Chuan-ming, ZHU Peng
(College of Civil Engineering, Tongji University, Shanghai 200092, China)
关键词:
加筋混凝土梁 FRP筋 延性系数 配筋率
Keywords:
reinforced concrete beam FRP bar ductility coefficient reinforcement ratio
分类号:
TU375.1
DOI:
-
文献标志码:
A
摘要:
由于纤维增强复合材料(FRP)筋不存在屈服状态,传统的延性系数计算方法不适用于FRP筋混凝土梁和混合配筋(钢筋+FRP筋)混凝土梁。为了提出一个相对完善的、统一的加筋混凝土梁截面延性计算方法,在对既有各类加筋混凝土梁延性指标计算方法进行分析的基础上,从抗震对结构延性的要求出发,依据延性系数的定义与动力要求统一的原则,推导得出了加筋混凝土结构延性系数-地震力降低系数(μ-C)关系式。依据等位移下的μ-C关系式,提出了加筋混凝土梁延性系数的计算方法。通过对比延性系数计算值与既有试验值,证明了该方法的有效性。对混凝土及钢筋强度、混凝土极限压应变、截面有效配筋率和FRP筋配筋刚度比等影响加筋混凝土梁延性的因素进行了参数化分析。结果表明:加筋混凝土梁的延性随着混凝土强度和极限压应变的增加而提高,随着钢筋强度、有效配筋率和FRP筋配筋刚度比的提高而降低。
Abstract:
Due to the fiber reinforced polymer(FRP)bars no yield state, the traditional ductility coefficient calculation method is not suitable for FRP reinforced concrete beams and hybrid reinforced(steel bars + FRP bars)concrete beams. In order to put forward a relatively perfect and unified method for calculating the ductility of reinforced concrete beams, the existing calculation methods of ductility coefficients of reinforced concrete beams were analyzed. According to the definition of ductility coefficient and the dynamic requirement, the formula of ductility coefficient-seismic force reduction coefficient(μ-C)relation of reinforced concrete structure was derived from the requirement of seismic resistance to ductility of structure. A method for calculating ductility coefficient of reinforced concrete beam was presented according to the formula of μ-C relation under equal displacement assumption. The effectiveness of the method was proved by comparing the calculated values with the experimental results. The factors affecting the ductility of reinforced concrete beams, such as the strength of concrete and reinforcement, the ultimate compressive strain of concrete, the effective reinforcement ratio and the ratio of reinforcement stiffness of FRP bars, were analyzed. The results show that the improvement of concrete strength and ultimate compressive strain is beneficial to the ductility of reinforced concrete beams, while the increase of reinforcement strength, effective reinforcement ratio and FRP reinforcement stiffness ratio has adverse effects on the ductility of reinforced concrete beams.

参考文献/References:

[1] LEUNG H Y,BALENDRAN R V.Flexural Behaviour of Concrete Beams Internally Reinforced with GFRP Rods and Steel Rebars[J].Structural Survey,2003,21(4):146-157.
[2]REFAI A E,ABED F,AL-RAHMANI A.Structural Performance and Serviceability of Concrete Beams Reinforced with Hybrid(GFRP and Steel)Bars[J].Construction and Building Materials,2015,96:518-529.
[3]黄海群.混杂配筋混凝土梁抗弯性能研究[D].上海:同济大学,2004.
HUANG Hai-qun.Study of Flexural Behavior of Hybrid Reinforced Concrete Beam[D].Shanghai:Tongji University,2004.
[4]葛文杰.FRP筋和钢筋混合配筋及其复合筋增强混凝土受弯构件的试验研究[D].南京:东南大学,2009.
GE Wen-jie.Experimental Study and Theoretical Analysis on Concrete Beams Reinforced with FRP Bars Blend with Steel Bars or FRP and Steel Composite Bars[D].Nanjing:Southeast University,2009.
[5]NAAMAN A E,JEONG S M.Structural Ductility of Concrete Beams Prestressed with FRP Tendons[C]//TAERWE L.Non-metallic(FRP)Reinforcement for Concrete Structures.London:Taylor & Francis,Inc.,1995:379-386.
[6]SPADEA G,BENCARDINO F,SWAMY R N.Optimizing the Performance Characteristics of Beams Strengthened with Bonded CFRP Laminates[J].Materials and Structures,2000,33(2):119-126.
[7]TAN K H.Behavior of Hybrid FRP-Steel Reinforced Concrete Beams[C]//Japan Concrete Institute.Nonmetallic(FRP)Reinforcement for Concrete Structures:Proceedings of the Third International Symposium(FRPRCS-3).Sapporo:Japan Concrete Institute,1997:487-494.
[8]徐 秦.FRP筋混凝土受弯构件的结构性能研究[D].西安:西安建筑科技大学,2009.
XU Qin,The Structural Property Research of Concrete Flexural Members Reinforced with Fiber Reinforced Polymer Bars[D].Xi'an:Xi'an University of Architecture and Technology,2009.
[9]ABDELRAHMAN A A,TADROS G,RIZKALLA S H.Test Model for the First Canadian Smart Highway Bridge[J].ACI Materials Journal,1995,92(4):451-458.
[10]ZOU P X W.Flexural Behavior and Deformability of Fiber Reinforced Polymer Prestressed Concrete Beams[J].Journal of Composites for Construction,2003,7(4):275-284.
[11]MUFTI A A,NEWHOOK J P,TADROS G.Deformability Versus Ductility in Concrete Beams with FRP Reinforcement[C]// CECS.Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges & Structures.Montreal:CECS,1996:189-199.
[12]AIELLO M A,OMBRES L.Structural Performances of Concrete Beams with Hybrid(Fiber-reinforced Polymer-steel)Reinforcements[J].Journal of Composites for Construction,2002,6(2):133-140.
[13]LAU D,PAM H J.Experimental Study of Hybrid FRP Reinforced Concrete Beams[J].Engineering Structures,2010,32:3857-3865.
[14]NAAMAN A E,HARAJLI M H,WIGHT J K.Analysis of Ductility in Partially Prestressed Concrete Flexural Members[J].PCI Journal,1986,31(3):64-87.
[15]PARK R,THOMPSON K J.Ductility of Prestressed and Partially Prestressed Concrete Beam Sections[J].PCI Journal,1980,25(2):46-69.
[16]PARK R,FALCONER T J.Ductility of Prestressed Concrete Piles Subjected to Simulated Seismic Loading[J].PCI Journal,1983,28(5):112-144.
[17]CAN/CSA-S6-00,Canadian Highway Bridge Design Code[S].
[18]冯 鹏,叶列平,黄羽立.受弯构件的变形性与新的性能指标的研究[J].工程力学,2005,22(6):28-36.
FENG Peng,YE Lie-ping,HUANG Yu-li.Deformability and New Performance Indices of Flexural Members[J].Engineering Mechanics,2005,22(6):28-36.
[19]翟长海,谢礼立.抗震规范应用强度折减系数的现状及分析[J].地震工程与工程振动,2006,26(2):1-7.
ZHAI Chang-hai,XIE Li-li.State-of-art of Applications of Strength Reduction Factors in Seismic Design Codes[J].Earthquake Engineering and Engineering Dynamics,2006,26(2):1-7.
[20]杨 媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题[J].重庆建筑大学学报,2000,22(增1):192-200.
YANG Yuan,BAI Shao-liang.Issues on Reliability Level of China Seismic Design Code of Buildings by Comparison with Other Countries[J].Journal of Chongqing Jianzhu University,2000,22(S1):192-200.
[21]庞 蕾,屈文俊,李 昂.混合配筋混凝土梁抗弯计算理论[J].中国公路学报,2016,29(7):81-88.
PANG Lei,QU Wen-jun,LI Ang.Calculation of Flexural Strength for Concrete Beams Reinforced with Hybrid(FRP and Steel)Bars[J].China Journal of Highway and Transport,2016,29(7):81-88.
[22]陈 辉.GFRP筋与钢筋混合配筋混凝土受弯构件的试验研究与理论分析[D].成都:西南交通大学,2007.
CHEN Hui.Experimental Research and Theoretical Analysis of Hybrid Reinforced Concrete Bending Element with GFRP Bars and Steel Bars[D].Chengdu:Southwest Jiaotong University,2007.

相似文献/References:

[1]朱 鹏,许家婧,屈文俊.混合配筋混凝土梁抗弯疲劳试验[J].建筑科学与工程学报,2019,36(04):55.
 ZHU Peng,XU Jia-jing,QU Wen-jun.Experiment on Fatigue Flexural Behaviors of Hybrid Reinforced Concrete Beams[J].Journal of Architecture and Civil Engineering,2019,36(06):55.

备注/Memo

备注/Memo:
收稿日期:2018-12-09
基金项目:国家自然科学基金项目(51678430); 国家重点研发计划专项项目(2017YFC0703003)
作者简介:屈文俊(1958-),男,河南辉县人,教授,博士研究生导师,工学博士,E-mail:quwenjun.tj@tongji.edu.cn。
更新日期/Last Update: 2019-11-26