|本期目录/Table of Contents|

[1]任志刚,王丹丹.不同圆心角圆端形钢管混凝土短柱轴压性能[J].建筑科学与工程学报,2020,37(05):77-87.[doi:10.19815/j.jace.2019.05088]
 REN Zhi-gang,WANG Dan-dan.Behavior of Round-ended Concrete-filled Steel Tube Stub Column with Different Central Angles Under Axial Load[J].Journal of Architecture and Civil Engineering,2020,37(05):77-87.[doi:10.19815/j.jace.2019.05088]
点击复制

不同圆心角圆端形钢管混凝土短柱轴压性能(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
77-87
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Behavior of Round-ended Concrete-filled Steel Tube Stub Column with Different Central Angles Under Axial Load
文章编号:
1673-2049(2020)05-0077-11
作者:
任志刚,王丹丹
武汉理工大学 土木工程与建筑学院,湖北 武汉 430070
Author(s):
REN Zhi-gang, WANG Dan-dan
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
关键词:
圆端形钢管混凝土 极限承载力 试验研究 圆心角 约束效应
Keywords:
round-ended concrete-filled steel tube ultimate bearing capacity experimental study central angle confinement effect
分类号:
TU311
DOI:
10.19815/j.jace.2019.05088
文献标志码:
A
摘要:
为研究圆心角60°和120°圆端形钢管混凝土短柱轴压力学性能,对4个圆端形钢管混凝土短柱进行轴压试验,探究不同圆心角和宽厚比对其极限承载力的影响。基于试验结果,应用有限元软件ABAQUS进行三维实体建模,对圆端形钢管混凝土短柱进行参数分析,研究了钢材强度、混凝土强度、宽厚比、高宽比、尺寸效应等对极限承载力的影响。基于参数分析,建立圆心角为60°和120°圆端形钢管混凝土短柱极限承载力实用计算公式。结果表明:破坏形态均为局部屈曲破坏,且平直段区域均出现局部屈曲现象; 随圆心角增大,构件极限承载力增大; 随宽厚比增大,极限承载力呈现下降趋势; 当圆弧段圆心角从60°增大至120°时,强度指标降低,表明整体约束效应减弱; 圆端形钢管混凝土轴压短柱的整体约束效应随圆心角增大而减小; 随着钢材强度、混凝土强度的增大和构件宽厚比的减小,极限承载力逐渐增大; 不同圆心角的尺寸效应对其极限承载力与初始刚度的影响类似,随着构件尺寸增大,极限承载力与初始刚度均呈现增大的趋势。
Abstract:
In order to study the mechanical properties of 60° and 120° round-ended concrete-filled steel tube stub columns under axial compression, four round-ended concrete-filled steel tube stub columns were tested to investigate the ultimate bearing capacity, considering the influence of different central angles and width-to-thickness ratios. Based on the test results, the finite element software ABAQUS was used to model the 3D solid. The parameters of the proposed round-ended concrete-filled steel tube stub columns were analyzed, and the influences of steel strength, concrete strength, width-thickness ratio, height-width ratio and size effect on the ultimate bearing capacity were studied. The results show that the failure modes are all local buckling, and the failure locations are located in the straight section. The ultimate bearing capacity of the columns increases when the central angle increases. The ultimate bearing capacity shows a downward trend when the width-thickness ratio increases. When the central angle of the circular arc increases from 60° to 120°, the strength index decreases, indicating that the overall confinement effect is weakened. The overall confinement effect of the round-ended concrete-filled steel tube stub column under axial load decreases with the increase of the central angle. With the increases of steel strength, concrete strength and decrease of width-to-thickness ratio, the ultimate bearing capacity increases gradually. The size effects of different central angles are similar to that of the initial stiffness. As the sizes of the member increases, the ultimate bearing capacity and initial stiffness show an increasing trend.

参考文献/References:

[1] GIAKOUMELIS G,LAM D.Axial Capacity of Circular Concrete-filled Tube Columns[J].Journal of Constructional Steel Research,2004,60(7):1049-1068.
[2]张素梅,周 明.方钢管约束下混凝土的抗压强度[J].哈尔滨建筑大学学报,1999,32(3):14-18.
ZHANG Su-mei,ZHOU Ming.Ultimate Strength of Concrete Confined by RHS Steel Tubes[J].Journal of Harbin University of C.E.& Architecture,1999,32(3):14-18.
[3]HAN L H,LU H,YAO G H,et al.Further Study on the Flexural Behavior of Concrete-filled Steel Tubes[J].Journal of Constructional Steel Research,2006,62(6):554-565.
[4]HAN L H,LIU W,YANG Y F.Behavior of Concrete-filled Steel Tubular Stub Columns Subjected to Axially Local Compression[J].Journal of Constructional Steel Research,2008,64(4):377-387.
[5]HAN L H,LIU W,YANG Y F.Behavior of Thin Walled Steel Tube Confined Concrete Stub Columns Subjected to Axial Local Compression[J].Thin-walled Structures,2008,46(2):155-164.
[6]HAN L H,ZHENG L Q,HE S H,et al.Tests and Mechanics Model for Concrete Filled Steel Tubular Members Subjected to Axial Compression[J].Journal of Constructional Steel Research,2011,67(6):956-976.
[7]王志滨,陈 靖,谢恩普,等.圆端形钢管混凝土柱轴压性能研究[J].建筑结构学报,2014,35(7):123-130.
WANG Zhi-bin,CHEN Jing,XIE En-pu,et al.Behavior of Concrete-filled Round-end Steel Tubular Stub Columns Under Axial Compression[J].Journal of Building Structures,2014,35(7):123-130.
[8]谷利雄,丁发兴,付 磊,等.圆端形钢管混凝土轴压短柱受力性能研究[J].中国公路学报,2014,27(1):57-63.
GU Li-xiong,DINF Fa-xing,FU Lei,et al.Mechanical Behavior of Concrete-filled Round-ended Steel Tubular Stub Columns Under Axial Load[J].China Journal of Highway and Transport,2014,27(1):57-63.
[9]DING F X,FU L,YU Z W,et al.Mechanical Performances of Concrete-filled Steel Tubular Stub Columns with Round Ends Under Axial Loading[J].Thin-walled Structures,2015,97:22-34.
[10]HASSANEIN M F,PATEL V I.Round-ended Rectangular Concrete-filled Steel Tubular Short Columns:FE Investigation Under Axial Compression[J].Journal of Constructional Steel Research,2018,140:222-236.
[11]WANG J F,SHEN Q H.Numerical Analysis and Design of Thin-walled RECFST Stub Columns Under Axial Compression[J].Thin-walled Structures,2018,129:166-182.
[12]谢建雄,蔡崇华,卢哲安,等.微膨胀钢管混凝土双肢柱试验研究与数值模拟[J].武汉大学学报:工学版,2010,43(4):485-489.
XIE Jian-xiong,CAI Chong-hua,LU Zhe-an,et al.Test Study and Numerical Simulation of Micro-expansive Round-ended Concrete Filled Steel Tubes Coupled Column[J].Engineering Journal of Wuhan University,2010,43(4):485-489.
[13]王二磊.圆端形钢管混凝土受压力学性能与可靠度研究[D].武汉:武汉理工大学,2012.
WANG Er-lei.Research on Compressive Behavior and Reliability of Round-ended Steel Tube-filled Concrete Column[D].Wuhan:Wuhan University of Technology,2012.
[14]李 彬.圆端形钢管混凝土塔柱钢管与混凝土相互作用研究[D].武汉:武汉理工大学,2009.
LI Bin.Study on the Interaction Between Steel Tube and Concrete of Round-ended Concrete-filled Steel Tube Tower Column[D].Wuhan:Wuhan University of Technology,2009.
[15]马小春.圆端形钢管混凝土轴压试验研究[D].武汉:武汉理工大学,2012.
MA Xiao-chun.Research on Axial Compression Test About Concrete Filled Steel Tube of Round Tip Shape[D].Wuhan:Wuhan University of Technology,2012.
[16]李培鹏,任志刚.圆端形钢管混凝土短柱轴压性能仿真分析[J].武汉理工大学学报,2014,36(9):96-101.
LI Pei-peng,REN Zhi-gang.Simulation Analysis of Round-ended Rectangular CFST Stub Columns Under Axial Load[J].Journal of Wuhan University of Technology,2014,36(9):96-101.
[17]谢恩普,王志滨,林 盛,等.圆端形钢管混凝土轴压短柱的机理分析[J].福州大学学报:自然科学版,2015,43(4):517-522.
XIE En-pu,WANG Zhi-bin,LIN Sheng,et al.Mechanism Analysis on Concrete-filled Round-end Steel Tubular Stub Columns Under Axial Load[J].Journal of Fuzhou University:Natural Science Edition,2015,43(4):517-522.

相似文献/References:

[1]肖海兵,赵均海,孙珊珊,等.方形薄壁钢管轻骨料混凝土短柱的承载力[J].建筑科学与工程学报,2010,27(02):83.
 XIAO Hai-bing,ZHAO Jun-hai,SUN Shan-shan,et al.Bearing Capacity of Short Column of Lightweight Aggregate Concrete-filled Square Thin-walled Steel Tube[J].Journal of Architecture and Civil Engineering,2010,27(05):83.
[2]陈以一,蒋路.带缝钢板剪力墙的承载力和开缝参数研究[J].建筑科学与工程学报,2010,27(03):109.
 CHEN Yi-yi,JIANG Lu.Research on Bearing Capacity and Slit Parameters of Steel Plate Shear Wall with Slits[J].Journal of Architecture and Civil Engineering,2010,27(05):109.
[3]张云鹏,刁波,叶英华.基于Timoshenko与高阶剪切变形梁理论的RC梁极限承载力分析[J].建筑科学与工程学报,2011,28(03):67.
 ZHANG Yun-peng,DIAO Bo,YE Ying-hua.Ultimate Bearing Capacities of RC Beam Based on Timoshenko and Higher-order Shear Deformation Beam Theories[J].Journal of Architecture and Civil Engineering,2011,28(05):67.
[4]刘向斌,周天华,聂少锋,等.冷弯薄壁型钢开口三肢拼合立柱轴压性能有限元分析[J].建筑科学与工程学报,2011,28(03):119.
 LIU Xiang-bin,ZHOU Tian-hua,NIE Shao-feng,et al.Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2011,28(05):119.
[5]袁晓洒,郑宏,于长亮.钢框架内填钢板深梁协同分析[J].建筑科学与工程学报,2012,29(02):43.
 YUAN Xiao-sa,ZHENG Hong,YU Chang-liang.Interactive Analysis of Steel Deep Beam Infilling Steel Frame[J].Journal of Architecture and Civil Engineering,2012,29(05):43.
[6]潘斌,石永久,王元清.Q460等级高强度钢材螺栓抗剪连接孔壁承压性能有限元分析[J].建筑科学与工程学报,2012,29(02):48.
 PAN Bin,SHI Yong-jiu,WANG Yuan-qing.Finite Element Analysis of Bolted Connection in Q460 Grade High Strength Steels Under Static Shear[J].Journal of Architecture and Civil Engineering,2012,29(05):48.
[7]屈讼昭,王志骞.波形钢腹板H型截面梁抗剪性能理论研究[J].建筑科学与工程学报,2012,29(02):111.
 QU Song-zhao,WANG Zhi-qian.Theoretical Research of Shear Performance of H-section Beams with Corrugated Steel Webs[J].Journal of Architecture and Civil Engineering,2012,29(05):111.
[8]李帼昌,韩刘.内置CFRP圆管的方钢管混凝土中长柱偏压试验[J].建筑科学与工程学报,2009,26(01):1.
 LI Guo-chang,HAN Liu.Experiment on Eccentrically Compression of Middle Long Columns of Concrete-filled Square Steel Tube with Inner CFRP Circular Tube[J].Journal of Architecture and Civil Engineering,2009,26(05):1.
[9]张志权,赵胜民,张玉芬,等.外方内圆钢管混凝土轴压承载力计算方法[J].建筑科学与工程学报,2009,26(02):63.
 ZHANG Zhi-quan,ZHAO Sheng-min,ZHANG Yu-fen,et al.Calculation Method of Axial Bearing Capacity of Concrete-filled Square Steel Tubular Columns Reinforced by Inner Circular Steel Tube[J].Journal of Architecture and Civil Engineering,2009,26(05):63.
[10]董毓利.火灾时钢筋混凝土板的承载力计算[J].建筑科学与工程学报,2009,26(04):14.
 DONG Yu-li.Calculation of Bearing Capacity of RC Concrete Slabs in Fire[J].Journal of Architecture and Civil Engineering,2009,26(05):14.

备注/Memo

备注/Memo:
收稿日期:2019-10-29
基金项目:国家自然科学基金项目(51778512)
作者简介:任志刚(1974-),男,湖北武汉人,教授,博士研究生导师,工学博士,E-mail:whut.ren@163.com。
更新日期/Last Update: 2020-10-15