|本期目录/Table of Contents|

[1]谭光伟,胡淑军,黄 华,等.机械套筒连接预制混凝土结构抗连续倒塌机理[J].建筑科学与工程学报,2022,39(05):32-40.[doi:10.19815/j.jace.2022.08007]
 TAN Guang-wei,HU Shu-jun,HUANG Hua,et al.Progressive Collapse Mechanism of Precast Concrete Structures Assembled with Mechanical Couplers[J].Journal of Architecture and Civil Engineering,2022,39(05):32-40.[doi:10.19815/j.jace.2022.08007]
点击复制

机械套筒连接预制混凝土结构抗连续倒塌机理(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年05期
页码:
32-40
栏目:
结构工程
出版日期:
2022-09-30

文章信息/Info

Title:
Progressive Collapse Mechanism of Precast Concrete Structures Assembled with Mechanical Couplers
文章编号:
1673-2049(2022)05-0032-09
作者:
谭光伟1,胡淑军2,黄 华3,覃幼辙4,钱 凯5
(1. 江西中煤建设集团有限公司,江西 南昌 330001; 2. 南昌大学 工程建设学院,江西 南昌 330031; 3. 长安大学 建筑工程学院,陕西 西安 710061; 4. 广西建工轨道装配式建筑产业有限公司,广西 柳州 545000; 5. 桂林理工大学 广西建筑新能源与节能重点实验室,广西 桂林 541004)
Author(s):
TAN Guang-wei1, HU Shu-jun2, HUANG Hua3, QIN You-zhe4, QIAN Kai5
(1. Zhongmei Engineering Group Ltd., Nanchang 330001, Jiangxi, China; 2. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, Jiangxi, China; 3. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China; 4. Guangxi Construction Engineering Track Assembly Construction Industry Co., Ltd, Liuzhou 545000, Guangxi, China; 5. Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, Guangxi, China)
关键词:
预制混凝土 机械套筒 连续倒塌 试验研究 有限元分析
Keywords:
precast concrete mechanical coupler progressive collapse experimental study finite element analysis
分类号:
TU375.4
DOI:
10.19815/j.jace.2022.08007
文献标志码:
A
摘要:
为研究机械套筒连接预制混凝土(PC)结构的抗连续倒塌性能,对2个1/2缩尺PC子结构开展了试验研究,获得了PC子结构的破坏模式、竖向抗力-位移曲线、水平反力-位移曲线和梁挠度曲线。通过有限元软件LS-DYNA建立了精细化有限元模型,并开展了数值分析。结果表明:子结构破坏主要集中在梁端,其中靠近中柱的梁端破坏相较于靠近边柱的梁端破坏更为严重; 梁-柱节点区域未发生明显破坏,试件的最终失效由中柱两侧梁端纵筋断裂控制,采用机械套筒连接可以保证梁底部钢筋的连续性; 压拱阶段和悬索阶段子结构主要通过梁截面剪力和轴拉力传递荷载; 增大钢筋直径可以显著提高子结构的第一峰值承载力和极限承载力; 混凝土抗压强度对于机械套筒连接PC子结构的承载力影响不大,但提高混凝土强度会提高混凝土与钢筋间的黏结力,导致梁纵筋更早发生断裂。
Abstract:
In order to study the progressive collapse resistance of precast concrete(PC)structures assembled with mechanical couplers, two 1/2 scaled PC substructures were tested. The failure modes, vertical resistance-displacement curves, horizontal reaction-displacement curves and beam deflection curves of PC substructures were obtained. A refined finite element model was established by finite element software LS-DYNA, and numerical analysis was carried out. The results show that the substructure damage is mainly concentrated in the beam end, and the beam end damage near the middle column is more serious than that near the side column. There is no obvious damage in the beam-column joint area. The final failure of the specimen is controlled by the fracture of the longitudinal reinforcement at the beam ends on both sides of the middle column. The mechanical couplers can ensure the continuity of the reinforcement at the bottom of the beam. The substructure mainly transmits the load through the shear force and axial tension of the beam section in the arch stage and the suspension stage. Increasing the diameter of reinforcement can significantly improve the first peak bearing capacity and ultimate bearing capacity of substructure. The compressive strength of concrete has little effect on the bearing capacity of PC substructure assembled with mechanical couplers, but increasing the strength of concrete will increase the bonding stress between concrete and reinforcement, resulting in earlier fracture of the longitudinal reinforcement.

参考文献/References:

[1] QIAN K,LI B.Performance of Precast Concrete Substructures with Dry Connections to Resist Progressive Collapse[J].Journal of Performance of Constructed Facilities,2018,32(2):04018005.
[2]ZHOU Y,HU X,PEI Y L,et al.Dynamic Load Test on Progressive Collapse Resistance of Fully Assembled Precast Concrete Frame Structures[J].Engineering Structures,2020,214:110675.
[3]ZHOU Y,CHEN T P,PEI Y L,et al.Static Load Test on Progressive Collapse Resistance of Fully Assembled Precast Concrete Frame Structure[J].Engineering Structures,2019,200:109719.
[4]LEW H S,MAIN J A,BAO Y H,et al.Performance of Precast Concrete Moment Frames Subjected to Column Removal:Part 1,Experimental Study[J].PCI Journal,2017,62(5):35-52..
[5]安 毅,李 易,陆新征,等.干式连接装配式混凝土框架抗连续倒塌静力试验研究[J].建筑结构学报,2020,41(7):102-109.
AN Yi,LI Yi,LU Xin-zheng,et al.Static Progressive Collapse Test on Precast Concrete Frames with Dry Connections[J].Journal of Building Structures,2020,41(7):102-109.
[6]李 治,翁运昊,邓小芳,等.焊接连接预制混凝土梁-板子结构抗连续倒塌性能研究[J].建筑结构学报,2020,41(10):121-128.
LI Zhi,WENG Yun-hao,DENG Xiao-fang,et al.Behavior of Precast Concrete Beam-slab Substructures with Welded Connections to Resist Progressive Collapse[J].Journal of Building Structures,2020,41(10):121-128.
[7]钱 凯,李 治,何 畔,等.螺栓连接预制混凝土梁-板子结构抗连续倒塌机理研究[J].建筑结构学报,2020,41(1):173-180.
QIAN Kai,LI Zhi,HE Pan,et al.Progressive Collapse Mechanism of PC Beam-slab Substructure with Bolted Connections[J].Journal of Building Structures,2020,41(1):173-180.
[8]BAO Y H,MAIN J A,LEW H S,et al.Performance of Precast Concrete Moment Frames Subjected to Column Removal:Part 2,Computational Analysis[J].PCI Journal,2017,62(5):53-74.
[9]QUIEL S E,NAITO C J,FALLON C T.A Non-emulative Moment Connection for Progressive Collapse Resistance in Precast Concrete Building Frames[J].Engineering Structures,2019,179:174-188.
[10]QIAN K,LIANG S L,XIONG X Y,et al.Quasi-static and Dynamic Behavior of Precast Concrete Frames with High Performance Dry Connections Subjected to Loss of a Penultimate Column Scenario[J].Engineering Structures,2020,205:110115.
[11]QIAN K,LIANG S L,FENG D C,et al.Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-tensioned Precast Concrete Beam-column Subassemblages[J].Journal of Structural Engineering,2020,146(9):04020170.
[12]QIAN K,LIANG S L,FU F,et al.Progressive Collapse Resistance of Precast Concrete Beam-column Sub-assemblages with High-performance Dry Connections[J].Engineering Structures,2019,198:109552.
[13]NIMSE R B,JOSHI D D,PATEL P V.Behavior of Wet Precast Beam Column Connections Under Progressive Collapse Scenario:An Experimental Study[J].International Journal of Advanced Structural Engineering,2014,6(4):149-159.
[14]KANG S B,TAN K H,YANG E H.Progressive Collapse Resistance of Precast Beam-column Sub-assemblages with Engineered Cementitious Composites[J].Engineering Structures,2015,98:186-200.
[15]KANG S B,TAN K H.Behaviour of Precast Concrete Beam-column Sub-assemblages Subject to Column Removal[J].Engineering Structures,2015,93:85-96.
[16]KANG S B,TAN K H.Robustness Assessment of Exterior Precast Concrete Frames Under Column Removal Scenarios[J].Journal of Structural Engineering,2016,142(12):04016131.
[17]QIAN K,LI B.Investigation into Resilience of Precast Concrete Floors Against Progressive Collapse[J].ACI Structural Journal,2019,116(2):171-182.
[18]ZHANG W X,WU H,ZHANG J Y,et al.Progressive Collapse Test of Assembled Monolithic Concrete Frame Spatial Substructures with Different Anchorage Methods in the Beam-column Joint[J].Advances in Structural Engineering,2020,23(9):1785-1799.
[19]QIAN K,LIANG S L,FU F,et al.Progressive Collapse Resistance of Emulative Precast Concrete Frames with Various Reinforcing Details[J].Journal of Structural Engineering,2021,147(8):04021107.
[20]张望喜,王 雄,刘精巾,等.现浇与装配整体式混凝土空间框架子结构的抗连续倒塌性能试验对比研究[J].建筑结构学报,2020,41(7):81-90.
ZHANG Wang-xi,WANG Xiong,LIU Jing-jin,et al.Experimental Comparative Study on Progressive Collapse Behavior of Cast-in-place and Monolithic Precast Concrete Spatial Frame Substructures[J].Journal of Building Structures,2020,41(7):81-90.
[21]袁鑫杰,李 易,陆新征,等.湿式连接装配式混凝土框架抗连续倒塌静力试验研究[J].土木工程学报,2019,52(12):46-56.
YUAN Xin-jie,LI Yi,LU Xin-zheng,et al.Static Progressive Collapse Test on Prefabricated Concrete Frames with Wet Connections[J].China Civil Engineering Journal,2019,52(12):46-56.
[22]ZHOU Y,YANG J B,WANG Z S,et al.Static Load Test on the Progressive Collapse Resistance of Precast Concrete Frame Substructure During and After High Temperature[J].Journal of Structural Engineering,2021,147(8):04021110.
[23]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for Design of Concrete Structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.
[24]装配式混凝土结构技术规程:JGJ 1—2014[S].北京:中国建筑工业出版社,2014.
Technical Specification for Precast Concrete Structures:JGJ 1—2014[S].Beijing:China Architecture & Building Press,2014.
[25]钢筋机械连接技术规程:JGJ 107—2016[S].北京:中国建筑工业出版社,2016.
Technical Specification for Mechanical Splicing of Steel Reinforcing Bars:JGJ 107—2016[S].Beijing:China Architecture & Building Press,2016.
[26]Building Code Requirements for Structural Concrete and Commentary:ACI 318-14[S].Washington DC:ACI,2014.
[27]YU J,TAN K H.Structural Behavior of RC Beam-column Subassemblages Under a Middle Column Removal Scenario[J].Journal of Structural Engineering,2013,139(2):233-250.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-08-02
基金项目:国家自然科学基金项目(52022024,51778153); 江西省地质局科技研究项目(2022JXDZKJKY10)
作者简介:谭光伟(1964-),男,江西吉安人,教授级高级工程师,E-mail:375104031@qq.com。
通信作者:钱 凯(1983-),男,浙江宁波人,教授,博士研究生导师,工学博士,E-mail:qiankai@glut.edu.cn。
更新日期/Last Update: 2022-09-30