|本期目录/Table of Contents|

[1]何晓雁,周 曜,刘平源,等.基于灰色理论的CBC单面冻融后抗压强度与孔结构参数关系研究[J].建筑科学与工程学报,2023,40(03):1-9.[doi:10.19815/j.jace.2021.10067]
 HE Xiaoyan,ZHOU Yao,LIU Pingyuan,et al.Relationship between compressive strength and pore structure of CBC after single side freeze-thaw based on grey theory[J].Journal of Architecture and Civil Engineering,2023,40(03):1-9.[doi:10.19815/j.jace.2021.10067]
点击复制

基于灰色理论的CBC单面冻融后抗压强度与孔结构参数关系研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年03期
页码:
1-9
栏目:
建筑材料
出版日期:
2023-05-20

文章信息/Info

Title:
Relationship between compressive strength and pore structure of CBC after single side freeze-thaw based on grey theory
文章编号:
1673-2049(2023)03-0001-09
作者:
何晓雁1,2,周 曜1,2,刘平源1,2,张天晓1,2
(1. 内蒙古工业大学 土木工程学院,内蒙古 呼和浩特 010051; 2. 内蒙古工业大学 内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心,内蒙古 呼和浩特 010051)
Author(s):
HE Xiaoyan1,2, ZHOU Yao1,2, LIU Pingyuan1,2, ZHANG Tianxiao1,2
(1. School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China; 2. Inner Mongolia Autonomous Region Building Inspection Appraisal and Safety Assessment Engineering Technology Research Center, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China)
关键词:
水泥基复合材料 孔结构参数 灰色理论 单面冻融 抗压强度
Keywords:
cement based composite material pore structure parameter grey theory single side freeze-thaw compressive strength
分类号:
TU528
DOI:
10.19815/j.jace.2021.10067
文献标志码:
A
摘要:
通过对水泥基材料(CBC)进行以NaCl溶液为冻融介质的单面冻融试验,探究CBC抗压强度及含气量、气泡间距系数、气泡比表面积、气泡平均弦长、气泡弦长大于20 μm的弦长频率等微观孔结构参数随冻融循环次数增加的变化规律,并运用灰色理论对抗压强度与各孔结构参数的内在联系进行分析。利用灰色相对关联度筛选出微观孔结构参数中与抗压强度关联最大的参数,对其进行了相关模拟和预测,并建立宏观性能与微观孔结构参数间的定量关系。结果表明:随冻融循环次数增加,CBC抗压强度逐渐降低,冻融循环后期下降速率加快; 试验过程中试件内部含气量、气泡间距系数、气泡平均弦长逐渐增大,而气泡比表面积逐渐减小; 灰色Verhulst模型相较于GM(1,1)模型更适用于气泡弦长大于20 μm的弦长频率的模拟; 采用灰靶决策模型定义的综合孔结构参数与抗压强度关联性更强,基于综合孔结构参数建立的模型精度更高。
Abstract:
Through the single-side freeze-thaw test of cement-based composite materials(CBC)with NaCl solution as the freeze-thaw medium, the compressive strength and micro-pore structure parameters of CBC, such as air content, bubble spacing coefficient, bubble specific surface area, bubble average chord length and chord length frequency with bubble chord length larger than 20 μm, were investigated with the increase of freeze-thaw cycles. The internal relationship between compressive strength and pore structure parameters was analyzed by grey theory. The parameters with the greatest correlation with compressive strength among the microscopic pore structure parameters were screened by grey relative correlation degree, and the related simulation and prediction were carried out, and the quantitative relationship between macroscopic properties and microscopic pore structure parameters was established. The results show that with the increase of freeze-thaw cycles, the compressive strength of CBC decreases gradually, and the rate of decline in the later stage of freeze-thaw cycles increases. During the test, the internal air content, bubble spacing coefficient and average chord length of bubbles gradually increase, while the specific surface area of bubbles gradually decrease. Compared with the GM(1,1)model, the grey Verhulst model is more suitable for the simulation of the chord length frequency of the bubble string larger than 20 μm. The comprehensive pore structure parameters defined by the grey target decision model have a stronger correlation with the compressive strength, and the model based on the comprehensive pore structure parameters has higher accuracy.

参考文献/References:

[1] 贾明皓,肖学良,钱 坤.玄武岩纤维及其增强水泥基复合材料研究进展[J].硅酸盐通报,2018,37(11):3467-3474.
JIA Minghao,XIAO Xueliang,QIAN Kun.Research progress in basalt fiber and its reinforced cement-based composites[J].Bulletin of the Chinese Ceramic Society,2018,37(11):3467-3474.
[2]陆振乾,杨雅茹,荀 勇.纤维对水泥基复合材料性能影响研究进展[J].纺织学报,2021,42(4):177-183.
LU Zhenqian,YANG Yaru,XUN Yong.Research review of fiber effect on properties of cement-based composites[J].Journal of Textile Research,2021,42(4):177-183.
[3]靳贺松,李福海,何肖云峰,等.聚丙烯纤维水泥基复合材料的抗冻性能研究[J].材料导报,2020,34(8):8071-8076,8082.
JIN Hesong,LI Fuhai,HE Xiaoyunfeng,et al.Research on frost resistance of polypropylene fiber cement-based composite material[J].Materials Reports,2020,34(8):8071-8076,8082.
[4]刘金亮,贾艳敏,王佳伟,等.季冻区盐冻作用下结构氯离子侵蚀耐久寿命预测[J].哈尔滨工程大学学报,2018,39(10):1625-1632.
LIU Jinliang,JIA Yanmin,WANG Jiawei,et al.Prediction of the durable life of prestressed concrete structures eroded by chloride ions under salt freezing in seasonally frozen areas[J].Journal of Harbin Engineering University,2018,39(10):1625-1632.
[5]姜文镪,刘清风.冻融循环下混凝土中氯离子传输研究进展[J].硅酸盐学报,2020,48(2):258-272.
JIANG Wenqiang,LIU Qingfeng.Chloride transport in concrete subjected to freeze-thaw cycles — a short review[J].Journal of the Chinese Ceramic Society,2020,48(2):258-272.
[6]杨才千,刘 飞,潘 勇,等.冻融循环作用下聚乙烯醇纤维增强快硬混凝土的力学性能[J].东南大学学报(自然科学版),2019,49(2):334-339.
YANG Caiqian,LIU Fei,PAN Yong,et al.Mechanical property of polyvinyl alcohol fiber reinforced fast-hardening concrete under freezing-thaw cycle effect[J].Journal of Southeast University(Natural Science Edition),2019,49(2):334-339.
[7]徐存东,黄 嵩,李洪飞,等.盐冻作用下玄武岩纤维混凝土力学性能损伤研究[J].硅酸盐通报,2021,40(3):812-820.
XU Cundong,HUANG Song,LI Hongfei,et al.Damage of mechanical properties of basalt fiber reinforced concrete under salt freezing[J].Bulletin of the Chinese Ceramic Society,2021,40(3):812-820.
[8]TIAN W,GAO F F.Damage and degradation of concrete under coupling action of freeze-thaw cycle and sulfate attack[J].Advances in Materials Science and Engineering,2020(9):8032849.
[9]安 雪.单面冻融条件下沙漠砂制备高韧性水泥基复合材料盐冻性能研究[D].银川:宁夏大学,2020.
AN Xue.Study on salt freezing performance of high toughness cementitious composites prepared by desert sand under single-side freeze-thaw conditions[D].Yinchuan:Ningxia University,2020.
[10]赵燕茹,刘芳芳,王 磊,等.单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J].材料导报,2020,34(12):12064-12069.
ZHAO Yanru,LIU Fangfang,WANG Lei,et al.Modeling of the compressive strength of basalt fiber concrete based on pore structure under single-side freeze-thaw condition[J].Materials Reports,2020,34(12):12064-12069.
[11]ZHU X Y,CHEN X D,ZHANG N,et al.Experimental and numerical research on triaxial mechanical behavior of self-compacting concrete subjected to freeze-thaw damage[J].Construction and Building Materials,2021,288:123110.
[12]占宝剑.盐水侵蚀和冻融对混凝土性能的影响研究[D].武汉:武汉理工大学,2009.
ZHAN Baojian.Study on the effects of saltwater erosion and freezing-thawing on concrete performance[D].Wuhan:Wuhan University of Technology,2009.
[13]ZHOU S B,LIANG J L,XUAN W A,et al.The correlation between pore structure and macro durability performance of road concrete under loading and freeze-thaw and drying-wetting cycles[J].Advances in Materials Science and Engineering,2017,2017:5015169.
[14]薛翠真,申爱琴,乔宏霞.掺CWCPM混凝土的冻融损伤机理及演化模型[J].华南理工大学学报(自然科学版),2020,48(3):136-144.
XUE Cuizhen,SHEN Aiqin,QIAO Hongxia.Freezing-thawing damage mechanism and evolution model of concrete mixed with CWCPM[J].Journal of South China University of Technology(Natural Science Edition),2020,48(3):136-144.
[15]赵燕茹,刘芳芳,王 磊,等.基于孔结构的单面冻后混凝土抗压强度模型研究[J].建筑材料学报,2020,23(6):1328-1336,1344.
ZHAO Yanru,LIU Fangfang,WANG Lei,et al.Modeling of compressive strength of concrete based on pore structure under single-side freeze-thaw condition[J].Journal of Building Materials,2020,23(6):1328-1336,1344.
[16]赵燕茹,王志慧,王 磊,等.冻融循环作用后BFRC宏微观性能的灰熵法分析[J].建筑材料学报,2019,22(1):45-53.
ZHAO Yanru,WANG Zhihui,WANG Lei,et al.Grey entropy analysis of macro and micro properties of BFRC after freeze-thaw cycles[J].Journal of Building Materials,2019,22(1):45-53.
[17]韩 恺.玄武岩纤维水泥基复合材料力学性能及抗盐冻性能研究[D].呼和浩特:内蒙古工业大学,2019.
HAN Kai.Study on mechanical properties and salt frost resistance of basalt fiber cement matrix composites[D].Hohhot:Inner Mongolia University of Technology,2019.
[18]邹汉文,刘 俊,夏 雨,等.混凝土抗冻性试验方法及评价指标[J].中国科技信息,2018(14):39-40.
ZOU Hanwen,LIU Jun,XIA Yu,et al.Test method and evaluation index of concrete frost resistance[J].China Science and Technology Information,2018(14):39-40.
[19]张天云,杨瑞成,陈 奎.基于相对关联度的工程选材决策模型及应用[J].工程设计学报,2008,15(2):120-123.
ZHANG Tianyun,YANG Ruicheng,CHEN Kui.Establishment and application of decision making model for engineering materials selection based on relative degree of incidence[J].Journal of Engineering Design,2008,15(2):120-123.
[20]高 矗,孔祥振,申向东.基于GM(1,1)的应力损伤轻骨料混凝土抗冻性评估[J].工程科学与技术,2021,53(4):184-190.
GAO Chu,KONG Xiangzhen,SHEN Xiangdong.Freeze-thaw resistance evaluation of lightweight aggregate concrete with stress damage based on GM(1,1)[J].Advanced Engineering Sciences,2021,53(4):184-190.
[21]张英姿,范颖芳,赵颖华.受盐酸腐蚀混凝土抗压强度的灰色预测模型[J].建筑材料学报,2007,10(4):397-401.
ZHANG Yingzi,FAN Yingfang,ZHAO Yinghua.Grey prediction model for compressive strength of concrete corroded by hydrochloric acid[J].Journal of Building Materials,2007,10(4):397-401.
[22]张 闯,彭振斌,彭文祥.优化的灰色离散Verhulst模型在基坑沉降预测中的应用[J].中南大学学报(自然科学版),2017,48(11):3030-3036.
ZHANG Chuang,PENG Zhenbin,PENG Wenxiang.Application of optimized grey discrete Verhulst model in settlement prediction of foundation pit[J].Journal of Central South University(Science and Technology),2017,48(11):3030-3036.
[23]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2017.
LIU Sifeng.Grey system theory and its application[M].Beijing:Science Press,2017.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-10-21
基金项目:国家自然科学基金项目(11862022); 内蒙古自治区自然科学基金项目(2020LH05008); 内蒙古自治区教育厅项目(NJZY19080)
作者简介:何晓雁(1970-),女,副教授,硕士生导师,E-mail:2732108278@qq.com。
更新日期/Last Update: 2023-05-20