|本期目录/Table of Contents|

[1]赵 瑞,刘永健,姜 磊,等.考虑弯曲应力占比的矩形钢管K型节点疲劳评估[J].建筑科学与工程学报,2023,40(05):119-128.[doi:10.19815/j.jace.2022.01040]
 ZHAO Rui,LIU Yongjian,JIANG Lei,et al.Fatigue assessment of rectangular hollow section K-joints due to degree of bending[J].Journal of Architecture and Civil Engineering,2023,40(05):119-128.[doi:10.19815/j.jace.2022.01040]
点击复制

考虑弯曲应力占比的矩形钢管K型节点疲劳评估(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年05期
页码:
119-128
栏目:
建筑结构
出版日期:
2023-09-15

文章信息/Info

Title:
Fatigue assessment of rectangular hollow section K-joints due to degree of bending
文章编号:
1673-2049(2023)05-0119-10
作者:
赵 瑞1,刘永健2,3,姜 磊2,3,傅一晟2,赵亚东2,赵鑫东2
(1. 同济大学 桥梁工程系,上海 200092; 2. 长安大学 公路学院,陕西 西安 710064; 3. 长安大学 公路大型结构安全教育部工程研究中心,陕西 西安 710064)
Author(s):
ZHAO Rui1, LIU Yongjian2,3, JIANG Lei2,3, FU Yisheng2, ZHAO Yadong2, ZHAO Xindong2
(1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China; 2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 3. Research Center of Highway Large Structure Engineering on Safety of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
疲劳评估 矩形空管K型节点 弯曲应力占比 断裂力学法
Keywords:
fatigue assessment rectangular hollow section K-joint degree of bending fracture mechanics method
分类号:
U441.4
DOI:
10.19815/j.jace.2022.01040
文献标志码:
A
摘要:
为提高S-N曲线法与断裂力学法等疲劳评估方法的准确性,探讨了矩形钢管K型节点在支管拉压平衡荷载作用下的弯曲应力占比计算方法。首先建立了矩形钢管K型节点有限元模型并结合试验进行了验证,然后通过大量的参数分析得出了节点几何参数对弯曲应力占比的影响,最后通过多元非线性回归分析推导出弯曲应力占比的计算公式及考虑工程实际应用偏安全的修正公式,给出了基于断裂力学法的矩形钢管K型节点断裂评估算例。结果表明:建立的模型与试验值相比,弯曲应力占比平均值为1.051,均方差为0.167,两者最大差值仅为7.5%,说明建立的有限元模型可靠; 提出的弯曲应力占比计算公式与有限元计算结果相比,其均值为1.073,均方差为0.055,变异系数为0.051,相对差值在10%之内,验证了拟合公式的可靠性; 考虑实际工程偏安全应用,在99.73%的保证率下提出乘以0.93倍的安全系数对弯曲应力占比计算公式进行修正; 当热点应力相近,弯曲应力占比降低39.3%时,疲劳寿命会降低10%,膜应力变大时会导致其裂纹尖端具有更大的应力强度因子而加快了裂纹扩展的速率。
Abstract:
In order to improve the accuracy of fatigue assessment methods such as S-N curve method and fracture mechanics method, the calculation method of degree of bending(DoB)of rectangular hollow section(RHS)K-joints under tension-compression balanced axial force was discussed. Firstly, the finite element model of RHS K-joints was established and verified by experiments. Then, the influence of joint geometric parameters on the DoB was obtained through a large number of parameter analysis. Finally, the calculation formula of the DoB and the correction formula considering the partial safety of engineering by multivariate nonlinear regression analysis. An example of fracture evaluation of RHS K-joints based on fracture mechanics method was given. The results show that compared with the experimental values, the average bending stress ratio of the established model is 1.051, the mean square error is 0.167, and the maximum difference between the two is only 7.5%, indicating that the established finite element model is reliable. Compared with the finite element calculation results, the mean value of the proposed DoB calculation formula is 1.073, the mean square error is 0.055, the coefficient of variation is 0.051, and the relative difference is within 10%, which verifies the reliability of the fitting formula. Considering the partial safety application of practical engineering, the formula for calculating the DoB is modified by multiplying the safety factor by 0.93 times under the guarantee rate of 99.73%. When the hot spot stress is similar, DoB is reduced by 39.3%, and the fatigue life will be reduced by 10%. When the membrane stress becomes larger, and the crack tip will have a larger stress intensity factor and accelerate the crack propagation rate.

参考文献/References:

[1] 陈以一,王 伟,周 锋.钢管结构——新需求驱动的形式拓展和性能提升[J].建筑结构学报,2019,40(3):1-20.
CHEN Yiyi,WANG Wei,ZHOU Feng.Steel tubular structures:configuration innovation and performance improvement driven by new requirements[J].Journal of Building Structures,2019,40(3):1-20.
[2]姜 磊,刘永健,龙 辛,等.基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估[J].交通运输工程学报,2020,20(6):104-116.
JIANG Lei,LIU Yongjian,LONG Xin,et al.Fatigue assessment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method[J].Journal of Traffic and Transportation Engineering,2020,20(6):104-116.
[3]姜 磊,刘永健,王康宁.焊接管节点结构形式发展及疲劳性能对比[J].建筑结构学报,2019,40(3):180-191.
JIANG Lei,LIU Yongjian,WANG Kangning.Development of welded tubular joints and comparison of fatigue behaviour[J].Journal of Building Structures,2019,40(3):180-191.
[4]黄汉辉,陈康明,吴庆雄,等.某中承式钢管混凝土桁式拱肋节点疲劳开裂分析[J].工程力学,2017,34(增1):167-173.
HUANG Hanhui,CHEN Kangming,WU Qingxiong,et al.Study on fatigue cracking of joint in a half-through CFST truss arch rib joint[J].Engineering Mechanics,2017,34(S1):167-173.
[5]姜 磊.矩形钢管混凝土桁梁桥节点疲劳性能和计算方法研究[D].西安:长安大学,2019.
JIANG Lei.Research on fatigue behaviour and calculation method of joints in concrete-filled rectangular hollow section truss bridge[D].Xi'an:Chang'an University,2019.
[6]刘永健,姜 磊,熊治华,等.PBL加劲型矩形钢管混凝土受拉节点热点应力集中系数计算方法[J].交通运输工程学报,2017,17(5):1-15.
LIU Yongjian,JIANG Lei,XIONG Zhihua,et al.Hot spot SCF computation method of concrete-filled and PBL-stiffened rectangular hollow section joint subjected to axial tensions[J].Journal of Traffic and Transportation Engineering,2017,17(5):1-15.
[7]XU F,CHEN J,JIN W L.Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J].Thin-walled Structures,2015,93:149-157.
[8]TONG L W,CHEN K P,XU G W,et al.Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis[J].Thin-walled Structures,2019,136:113-128.
[9]ZHENG J,NAKAMURA S,OKUMATSU T,et al.Formulation of stress concentration factors for concrete-filled steel tubular(CFST)K-joints under three loading conditions without shear forces[J].Engineering Structures,2019,190:90-100.
[10]MUSA I A,MASHIRI F R,ZHU X Q,et al.Experimental stress concentration factor in concrete-filled steel tubular T-joints[J].Journal of Constructional Steel Research,2018,150:442-451.
[11]KIM I G,CHUNG C H,SHIM C S,et al.Stress concentration factors of N-joints of concrete-filled tubes subjected to axial loads[J].International Journal of Steel Structures,2014,14(1):1-11.
[12]JIANG L,LIU Y J,FAM A.Stress concentration factors in joints of square hollow section(SHS)brace and concrete-filled SHS chord under axial tension in brace[J].Thin-walled Structures,2018,132:79-92.
[13]JIANG L,LIU Y J,FAM A.Stress concentration factors in concrete-filled square hollow section joints with perfobond ribs[J].Engineering Structures,2019,181:165-180.
[14]JIANG L,LIU Y J,FAM A,et al.Stress concentration factor parametric formulae for concrete-filled rectangular hollow section K-joints with perfobond ribs[J].Journal of Constructional Steel Research,2019,160:579-597.
[15]JIANG L,LIU Y J,LIU J A,et al.Experimental and numerical analysis of the stress concentration factor for concrete-filled square hollow section Y-joints[J].Advances in Structural Engineering,2019,23(5):869-883.
[16]JIANG L,LIU Y J,FAM A,et al.Fatigue behavior of integral built-up box Y-joints between concrete-filled chords with perfobond ribs and hollow braces[J].Journal of Structural Engineering,2020,146(3):04019218.
[17]JIANG L,LIU Y J,FAM A,et al.Fatigue behaviour of non-integral Y-joint of concrete-filled rectangular hollow section continuous chord stiffened with perfobond ribs[J].Engineering Structures,2019,191:611-624.
[18]MASHIRI F R,ZHAO X L.Square hollow section(SHS)T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace[J].Thin-walled Structures,2010,48(2):150-158.
[19]BAKER J.Fatigue life enhancement of tubular joints by grout injection[R].Glasgow:Health and Safety Executive,1993.
[20]YANG Z M,LIE S T,GHO W M.Fatigue crack growth analysis of a square hollow section T-joint[J].Journal of Constructional Steel Research,2007,63(9):1184-1193.
[21]WANG Z Y,ZHANG Y F,WANG Y Q,et al.Numerical study on fatigue behavior of tubular joints for signal support structures[J].Journal of Constructional Steel Research,2018,143:1-10.
[22]YAGI K,TANAKA S,KAWAHARA T,et al.Evaluation of crack propagation behaviors in a T-shaped tubular joint employing tetrahedral FE modeling[J].International Journal of Fatigue,2017,96:270-282.
[23]LI X,DONG S E,MOHAMED H S,et al.Prediction of tubular T/Y-joint SIF by GA-BP neural network[J].KSCE Journal of Civil Engineering,2020,24(9):2706-2715.
[24]PANG J H L,TSANG K S,HOH H J.3D stress intensity factors for weld toe semi-elliptical surface cracks using XFEM[J].Marine Structures,2016,48:1-14.
[25]MOHAMED H S,LI X,DONG S E,et al.Parametric equation to predict the SIF of cracked tubular T/Y-joints[J].Journal of Constructional Steel Research,2020,164:105773.
[26]SHEN W,CHOO Y S.Stress intensity factor for a tubular T-joint with grouted chord[J].Engineering Structures,2012,35:37-47.
[27]CHANG E,DOVER W D.Prediction of degree of bending in tubular X and DT joints[J].International Journal of Fatigue,1999,21(2):147-161.
[28]MORGAN M R,LEE M M K.Prediction of stress concentrations and degrees of bending in axially loaded tubular K-joints[J].Journal of Constructional Steel Research,1998,45(1):67-97.
[29]AHMADI H,ALI LOTFOLLAHI-YAGHIN M,ASOODEH S.Degree of bending(DoB)in tubular K-joints of offshore structures subjected to in-plane bending(IPB)loads:study of geometrical effects and parametric formulation[J].Ocean Engineering,2015,102:105-116.
[30]AHMADI H,ASOODEH S.Parametric study of geometrical effects on the degree of bending(DoB)in offshore tubular K-joints under out-of-plane bending loads[J].Applied Ocean Research,2016,58:1-10.
[31]AHMADI H,ZAVVAR E.Degree of bending(DoB)in offshore tubular KT-joints under the axial,in-plane bending(IPB),and out-of-plane bending(OPB)loads[J].Applied Ocean Research,2020,95:102015.
[32]THORPE T W.A simple model of fatigue crack growth in welded joints[R].London:UKAEA Harwell Lab,1986.
[33]刘永健,姜 磊,王康宁.焊接管节点疲劳研究综述[J].建筑科学与工程学报,2017,34(5):1-20.
LIU Yongjian,JIANG Lei,WANG Kangning.Review of fatigue behavior in welded tubular joints[J].Journal of Architecture and Civil Engineering,2017,34(5):1-20.
[34]Recommended practice for planning,designing and constructing fixed offshore platforms-working stress design:IIW Document XV-1035-99[S].Washington DC:American Petroleum Institute,2002.
[35]NEWMAN J C,RAJU I S.An empirical stress-intensity factor equation for the surface crack[J].Engineering Fracture Mechanics,1981,15(1/2):185-192.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-01-10
基金项目:国家自然科学基金项目(52008026); 长安大学研究生科研创新实践项目(300103714019)
作者简介:赵 瑞(1997-),女,工学博士研究生,E-mail:2310571@tongji.edu.cn。
通信作者:刘永健(1966-),男,工学博士,教授,博士生导师,E-mail:liuyongjian@chd.edu.cn。
更新日期/Last Update: 2023-09-01