|本期目录/Table of Contents|

[1]侯刚,童乐为.较高含碳量冷弯方钢管焊接应力-应变场的数值模拟[J].建筑科学与工程学报,2010,27(02):114-120.
 HOU Gang,TONG Le-wei.Numerical Simulation of Welding Stress-strain Field for Cold-formed Square Steel Tube with Higher Carbon Content[J].Journal of Architecture and Civil Engineering,2010,27(02):114-120.
点击复制

较高含碳量冷弯方钢管焊接应力-应变场的数值模拟(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
27卷
期数:
2010年02期
页码:
114-120
栏目:
出版日期:
2010-06-20

文章信息/Info

Title:
Numerical Simulation of Welding Stress-strain Field for Cold-formed Square Steel Tube with Higher Carbon Content
作者:
侯刚,童乐为
同济大学 建筑工程系,上海 200092
Author(s):
HOU Gang, TONG Le-wei
Department of Building Engineering, Tongji University, Shanghai 200092, China
关键词:
冷弯方钢管 焊接 微观组织 残余应力 数值模拟 含碳量
Keywords:
cold-formed square steel tube welding microstructure residual stress numerical simulation carbon content
分类号:
TU392
DOI:
-
文献标志码:
A
摘要:
为了更好地预测含碳量较高的冷弯方钢管的焊接应力-应变场,应用有限元软件ABAQUS及移动双椭球型焊接热源模型,对焊接过程进行了数值模拟。在数值模拟过程中,采用了考虑与不考虑材料微观组织影响的2种方法,其中微观组织的作用通过引入冷却过程中材料马氏体化引起的体积膨胀来施加。分析结果表明:考虑材料微观组织影响可以更好地预测含碳量较高的冷弯方钢管的应力-应变场,纵向残余应力在焊缝处显著降低,横向残余应力在临近焊缝处也有所降低,但在焊缝处显著升高。
Abstract:
In order to exactly predict welding stress-strain field for cold-formed square steel tube with higher carbon content, welding processes were numerically simulated by using finite element software ABAQUS and double ellipsoidal heat source model. Two methods, namely considering the effect of microstructure field or not, were applied during numerical simulation. The action of microstructure field was exerted by introducing the volume expansion of material caused by martensitic change in cooling process. Analysis results show that the methods of considering the microstructure field effect can better predict the welding stress-strain field for cold-formed square steel tube with higher carbon content. The longitudinal residual stresses become much smaller at the position of weld, and the transversal residual stresses also become smaller near the weld, but much larger at the weld.

参考文献/References:

[1] LEGGATT R H.Residual Stresses in Welded Structures[J].International Journal of Pressure Vessels and Piping,2008,85(3):144-151.
[2]FREE J A,PORTER GOFF R F D.Predicting Residual Stresses in Multi-pass Weldments with the Finite Element Method[J].Computers & Structures,1989,32(2):365-378.
[3]JG/T 178—2005,建筑结构用冷弯矩形钢管[S]. JG/T 178—2005,Cold-formed Rectangular Steel Tubes in Building Structures[S].
[4]BUCHMAYR B,KIRKALDY J S.Modeling of the Temperature Field Transformation Behavior Hardness and Mechanical Response of Low Alloy Steels During Cooling from the Austenite Region[J].Journal of Heat Treating,1990,8(2):127-136.
[5]KARLSSON L.Thermal Stresses in Welding[M].Amsterdam:Elsevier,1986:299-389.
[6]ANDREWS K W.Empirical Formulae for the Calculation of Some Transformation Temperature[J].JISI,1965,203:721-727.
[7]KOISTINEN D P,MARBURGER R E.A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron Carbon Alloys and Plain Carbon Steels[J].Acta Metallur-gica,1959,7(1):59-60.
[8]DENG D,MURAKAWA H,LIANG W.Numerical and Experimental Investigations on Welding Residual Stress in Multi-pass Butt-welded Austenitic Strainless Steel Pipe[J].Computational Materials Science,2008,42(2):234-244.
[9]HAN H N,LEE C G,OH C S,et al.A Model for Deformation Behavior and Mechanically Induced Martensitic Transformation of Metastable Austenitic Steel[J].Acta Materialia,2004,52(17):5203-5214.
[10]CANAS J,PICON R,PARIS F,et al.A Simplified Numerical Analysis of Residual Stresses in Aluminum Welded Plates[J].Computers & Structures,1996,58(1):59-69.
[11]EN 1993-1-1,Eurocode 3:Design of Steel Structures[S].
[12]ZHU X K,CHAO Y J.Effects of Temperature-dependent Material Properties on Welding Simulation[J].Computers & Structures,2002,80(11):967-976.
[13]WEI J,YAHIAOUI K.Finite Element Prediction of Residual Stress Distributions in a Multipass Welded Piping Branch Junction[J].Journal of Pressure Vessel Technology,2007,129(4):601-608.
[14]GLICKSTEIN S S,FRIEDMAN E.Characterization and Modeling of the Heat Source[R].New York:ASM,1994:1141-1146.
[15]GOLADK J,CHAKRAVARITI A,BIBBY M.A New Finite Element Model for Welding Heat Sources[J].Metallurgical Transactions B,1984,15(2):299-305.
[16]曾 国,郭永进,于忠奇,等.辊弯成形方形型钢的残余应力[J].钢铁研究学报,2008,20(11):29-32. ZENG Guo,GUO Yong-jin,YU Zhong-qi,et al.Residual Stresses of Roll-formed Shape with Square Section[J].Journal of Iron and Steel Research,2008,20(11):29-32.
[17]YONG L P,TRAHAIR N S.Lateral Buckling Strengths of Cold-formed Rectangular Hollow Sections[J].Thin-walled Structures,1995,22(2):71-95.
[18]SIVAKUMARAN K S,ABDEL-RAHMAN N.A Finite Element Analysis Model for the Behavior of Cold-formed Steel Members[J].Thin-walled Structures,1998,31(4):305-324.
[19]MOEN C D,IGUSA T,SCHAFER B W.Prediction of Residual Stresses and Strains in Cold-formed Steel Members[J].Thin-walled Structures,2008,46(11):1274-1289.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2010-02-09
作者简介:侯 刚(1981-),男,辽宁沈阳人,工学博士研究生,E-mail:monkey1270188@163.com。
更新日期/Last Update: 2010-06-20