|本期目录/Table of Contents|

[1]张虎元,张悦,张学超.钢结构防火涂料着装状态与温湿循环的关系[J].建筑科学与工程学报,2012,29(03):24-30.
 ZHANG Hu-yuan,ZHANG Yue,ZHANG Xue-chao.Relations of Fire Resistive Coating for Steel Structure and Cycles of Temperature and Humidity[J].Journal of Architecture and Civil Engineering,2012,29(03):24-30.
点击复制

钢结构防火涂料着装状态与温湿循环的关系(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
29卷
期数:
2012年03期
页码:
24-30
栏目:
出版日期:
2012-09-30

文章信息/Info

Title:
Relations of Fire Resistive Coating for Steel Structure and Cycles of Temperature and Humidity
作者:
张虎元1,2,张悦2,张学超2
1. 兰州大学 西部灾害与环境力学教育部重点实验室,甘肃 兰州 730000; 2. 兰州大学 土木工程与力学学院,甘肃 兰州 730000
Author(s):
ZHANG Hu-yuan1,2, ZHANG Yue2, ZHANG Xue-chao2
1. Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, China; 2. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, Gansu, China
关键词:
钢结构 防火涂料 加速老化 质量损失 温湿循环 耐久性 涂层附着力
Keywords:
steel structure fire resistive coating accelerated aging mass loss cycle of temperature and humidity durability coating adhesion force
分类号:
TU545
DOI:
-
文献标志码:
A
摘要:
进行了钢结构防火涂料室内模拟加速老化试验,探讨了环境温湿度变化对防火涂料的物理着装状态及其耐久性的影响; 选择防火涂层厚度和温湿循环次数为变量,试验测定循环前后防火涂层外观、色差、微结构及粘结强度的变化。试验结果表明:随着温湿循环次数的增加,防火涂层发生质量损失、厚度减少、龟裂、颜色变暗泛黄及孔隙扩大现象; 防火涂料的初始涂层厚度越大,这种变化趋势越明显; 在测试的40次温湿循环范围内,防火涂层与钢板基材之间的附着力有提高的趋势,但随着循环次数的继续增加,附着力开始降低; 温湿循环相同时,薄层涂料的附着力大于厚层涂料; 与厚层防火涂层相比,薄层涂料物理着装状态受温湿循环次数影响较小,抵抗老化变形的能力较强,耐候性更高。
Abstract:
The accelerated aging test on a fire resistive coating(FRC)for steel structure was done to understand the effects of temperature and humidity variation on FRC physical properties and durability. In the laboratory aging test, FRC thickness and the cycles of temperature and humidity were controlled, and the phenomena including the surface aspect, color, microstructure and adhesion were observed. Test results indicate that FRC has a tendency in mass loss, thickness decrease, fracturing, darkening and yellowing in color, and pore enlargement after exposure to increase the cycles of temperature and humidity variations. The higher the FRC thickness is, the more obvious these phenomena are. Within the 40 cycles of temperature and humidity conducted, the adhesion between FRC coating and steel is found to be increased at the early cycles but decreased finally at the late cycles. After the exposure to same cycles of temperature and humidity, thinner FRC shows a higher adhesion compared to a thicker one. The final conclusion supported by the accelerated aging test is that a thin FRC possesses a better resistance and durability to weather variation.

参考文献/References:

[1] 陈建领.钢结构建筑的火灾危险性和防火涂料保护浅析[J].江西化工,2005(3):49-51. CHEN Jian-ling.Discussion About the Danger of Conflagrations and Protection of Fire Resistive Coating for Steel Structure Buildings[J].Jiangxi Chemical Industry,2005(3):49-51.
[2] 程海丽.钢结构防火涂料的耐久性问题[J].新型建筑材料,2003(9):1-2. CHENG Hai-li.Durability of Fire Resistive Coating for Steel Structure[J].New Building Materials,2003(9):1-2.
[3]孙黎明.建筑钢结构的防火处理[J].中国新技术新产品,2010(2):150. SUN Li-ming.Fireproof Protection of Steel Structure[J].China New Technologies and Products,2010(2):150.
[4]SAKUMOTO Y,NAGATA J,KODAIRA A,et al.Durability Evaluation of Intumescent Coating for Steel Frames[J].Journal of Materials in Civil Engineering,2001,13(4):274-281.
[5]MISZCZYK A,DAROWICKI K.Effect of Environmental Temperature Variations on Protective Properties of Organic Coatings[J].Progress in Organic Coatings,2003,46(1):49-54.
[6]师 华,郑卫东,熊家锦,等.超薄型钢结构防火涂料在不同钢材上的防火性能研究[J].消防技术与产品信息,2003(11):16-21. SHI Hua,ZHENG Wei-dong,XIONG Jia-jin,et al.The Study of Fire Proof Characteristics of Superthin Fire Proof Coating for Steel Structure on Various Kinds of Steel[J].Fire Technique and Products Information,2003(11):16-21.
[7]PERERA D Y,OOSTERBROEK M.Hygrothermal Stress Evolution During Weathering in Organic Coatings[J].Journal of Coatings Technology,1994,66(883):83-88.
[8]NORVAISIENE R,BURLINGIS A,STANKEVICIUS V.Durability Tests on Painted Facade Rendering by Accelerated Ageing[J].Materials Science,2010,16(1):80-85.
[9]WYPYCH G.Handbook of Material Weathering[M].3rd ed.Toronto:ChemTec Publishing,2003.
[10]WYPYCH G,LEE F,POURDEYHIMI B.Instrument Selection Affects Correlation of Laboratory and Outdoor Exposures of Sealants[J].Polymeric Materials Science and Engineering,2000(83):143-144.
[11]ABRAMOFF M D,MAGELHAES P J,RAM S J.Image Processing with Image[J].Journal of Biophotonics International,2004,11(7):36-42.

相似文献/References:

[1]周奎,郭耀.基于S变换的结构损伤信号处理[J].建筑科学与工程学报,2013,30(04):65.
 ZHOU Kui,GUO Yao.Structural Damage Signal Processing Based on S-transform[J].Journal of Architecture and Civil Engineering,2013,30(03):65.
[2]陈适才,田相凯,张 磊,等.动力转换分析方法的火灾引起钢结构连续倒塌性能研究[J].建筑科学与工程学报,2014,31(02):65.
 [J].Journal of Architecture and Civil Engineering,2014,31(03):65.
[3]刘秀丽,王 燕,李美红,等.钢结构T形连接高强度螺栓受力分析及数值模拟[J].建筑科学与工程学报,2016,33(02):63.
 LIU Xiu-li,WANG Yan,LI Mei-hong,et al.Force Analysis and Numerical Simulation of High Strength Bolts in T-stub Connection of Steel Structure[J].Journal of Architecture and Civil Engineering,2016,33(03):63.
[4]蒋 立,王元清,戴国欣,等.负载下焊接加固钢结构压弯构件受力性能的影响因素分析[J].建筑科学与工程学报,2016,33(05):120.
 JIANG Li,WANG Yuan-qing,DAI Guo-xin,et al.Influence Factor Analysis of Mechanical Behavior of Compression-bending Member of Steel Structure Strengthened by Welding Under Load[J].Journal of Architecture and Civil Engineering,2016,33(03):120.
[5]范 重,李 夏,晁江月,等.航站楼使用阶段钢结构温度取值研究[J].建筑科学与工程学报,2017,34(04):9.
 FAN Zhong,LI Xia,CHAO Jiang-yue,et al.Study on Temperature of Steel Structure in Use Phase of Terminal Building[J].Journal of Architecture and Civil Engineering,2017,34(03):9.
[6]陈长坤,张冬.高温作用下钢交错桁架结构侧移简化模型[J].建筑科学与工程学报,2011,28(01):16.
 CHEN Chang-kun,ZHANG Dong.Simplified Model for Lateral Displacement of Steel Staggered-truss Structure Under High Temperature[J].Journal of Architecture and Civil Engineering,2011,28(03):16.
[7]陈颖智,童乐为,陈以一.组件法用于钢结构节点性能分析的研究进展[J].建筑科学与工程学报,2012,29(03):81.
 CHEN Ying-zhi,TONG Le-wei,CHEN Yi-yi.Research Developments of Component Method for Behavior of Joints in Steel Structures[J].Journal of Architecture and Civil Engineering,2012,29(03):81.
[8]计琳,赵均海,翟越,等.轴向约束对钢结构柱抗火性能的影响[J].建筑科学与工程学报,2006,23(04):64.
 JI Lin,ZHAO Jun-hai,ZHAI Yue,et al.Effect of Axial Restraint on Fire Resistance Performance of Steel Column[J].Journal of Architecture and Civil Engineering,2006,23(03):64.
[9]黄学伟,赵 军.不同断裂模型在钢结构断裂破坏预测中的比较[J].建筑科学与工程学报,2018,35(01):93.
 HUANG Xue-wei,ZHAO Jun.Comparison of Different Fracture Models for Fracture Failure Prediction of Steel Structures[J].Journal of Architecture and Civil Engineering,2018,35(03):93.
[10]游 颖,王 建,刘学刚,等.改进BP神经网络的钢结构应力缺失数据重构[J].建筑科学与工程学报,2022,39(04):166.[doi:10.19815/j.jace.2021.11130]
 YOU Ying,WANG Jian,LIU Xue-gang,et al.Reconstruction of Missing Stress Data for Steel Structure Based on Improved BP Neural Network[J].Journal of Architecture and Civil Engineering,2022,39(03):166.[doi:10.19815/j.jace.2021.11130]

备注/Memo

备注/Memo:
收稿日期:2012-04-10
基金项目:“十一五”国家科技支撑计划项目(2010BAK67B16); 兰州大学“2010年度大学生创新创业行动计划”项目
作者简介:张虎元(1963-),男,甘肃宁县人,教授,博士研究生导师,工学博士,博士后,E-mail:zhanghuyuan@lzu.edu.cn。
更新日期/Last Update: 2012-09-20