|本期目录/Table of Contents|

[1]孙瑛志,李国强,孙飞飞.双阶屈服屈曲约束支撑框架小震参数分析[J].建筑科学与工程学报,2019,36(06):88-94.
 SUN Ying-zhi,LI Guo-qiang,SUN Fei-fei.Parametric Analysis of Frames with Two-level-yielding Buckling Restrained Braces Under Frequent Earthquake[J].Journal of Architecture and Civil Engineering,2019,36(06):88-94.
点击复制

双阶屈服屈曲约束支撑框架小震参数分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年06期
页码:
88-94
栏目:
出版日期:
2019-11-25

文章信息/Info

Title:
Parametric Analysis of Frames with Two-level-yielding Buckling Restrained Braces Under Frequent Earthquake
文章编号:
1673-2049(2019)06-0088-07
作者:
孙瑛志1,李国强1,2,孙飞飞1,2
(1. 同济大学 土木工程学院,上海 200092; 2. 同济大学 土木工程防灾国家重点实验室,上海 200092)
Author(s):
SUN Ying-zhi1, LI Guo-qiang1,2, SUN Fei-fei1,2
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China;2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
关键词:
防灾减灾 参数分析 金属套管阻尼器 屈曲约束支撑
Keywords:
disaster prevention and mitigation parametric analysis metal tube damper buckling restrained brace
分类号:
TU973.2
DOI:
-
文献标志码:
A
摘要:
为了弥补常规屈曲约束支撑在多遇地震作用下处于弹性状态,不能发挥消能减震作用的不足,提出了一种将金属套管阻尼器与屈曲约束支撑组合形成的双阶屈服屈曲约束支撑,经试验验证其具有良好、稳定的小震及中大震下的滞回特性。在小震作用下,金属套管阻尼器屈服消能,屈曲约束芯板保持弹性承载。借助有限元软件ETABS建立了一系列双阶屈服屈曲约束支撑框架模型,通过改变支撑与框架刚度比、阻尼器与芯板的轴向刚度关系以及套管阻尼器的屈服比例,对各模型进行小震作用下的动力弹塑性分析,将各模型基底剪力和最大层间位移角与相应的常规屈曲约束支撑框架的分析结果进行对比。结果表明:双阶屈服屈曲约束支撑与支撑芯板的轴向弹性刚度比取2左右,阻尼器屈服比例取0.3左右时,可取得较好的减震效果; 双阶屈服屈曲约束支撑的参数取值改变,对降低结构地震响应的影响趋势不因支撑与框架刚度比不同而改变; 当支撑刚度贡献较大时,相较常规屈曲约束支撑,双阶屈服屈曲约束支撑的设置能降低结构的层间位移角,若要同时降低基底剪力,阻尼器屈服比例不宜高于0.3。
Abstract:
In order to overcome the deficiency that the conventional buckling restrained braces(BRBs)were in elastic state under frequent earthquakes, and cannot dissipate energy, a novel two-level-yielding buckling restrained brace composed of conventional BRB and metal tube damper was developed, and its reliably and stable hysteretic characteristics under both frequent and large earthquakes were verified by experiments. Under frequent earthquakes, the metal tube damper yields to dissipate energy and the buckling restrained core plate keeps elastic. A series of braced frame models with the novel braces were established by means of the finite element software ETABS. By changing the stiffness ratios of braces and frames, the axial stiffness relationship of tube dampers and core plates, and the yield ratios of tube dampers, the dynamic elastoplastic analysis under frequent earthquakes of each model was carried out, while the base shear forces and the maximum inter-story drift angles were compared with the analysis results of corresponding BRB frames. The results show that when the axial elastic stiffness ratio of the novel two-level-yielding buckling restrained brace and core plate is about 2, and the yield ratio of tube damper is about 0.3, the structure can achieve better seismic reduction effect. The parameter change of the two-level-yielding buckling restrained brace for the influence tendency of reducing structural seismic response does not vary with the different stiffness ratios of braces and frames. For braced frames with large brace stiffness, compared with the conventional BRB, the inter-story drift angles of the structure can be reduced by setting the two-level-yielding buckling restrained brace. If the base shear force is to be reduced at the same time, the yield ratio of damper should not be higher than 0.3.

参考文献/References:

[1] 白雪霜.现有钢筋混凝土框架结构抗震鉴定方法试验研究[D].北京:中国建筑科学研究院,2012.
BAI Xue-shuang.Experimental Research on Seismic Appraisal Method of Existing Reinforced Concrete Frame Structures[D].Beijing:China Academy of Building Research,2012.
[2]胡鞍钢.汶川地震灾害评估及灾区重建分析报告[J].建材发展导向,2008,6(3):8-12.
HU An-gang.Wenchuan Earthquake Disaster Assessment and Reconstruction Analysis Report[J].Development Guide to Building Materials,2008,6(3):8-12.
[3]KIMURA K,YOSHIOKA K,TAKEDA T,et al.Tests on Braces Encased by Mortar In-filled Steel Tubes[C]//AIJ.Summaries of Technical Papers of 1980 Annual Meeting of the Architectural Institute of Japan.Tokyo:AIJ,1976:1041-1042.
[4]MOCHIZUKI N,MURATA Y,ANDOU N,et al.An Experimental Study on Buckling of Unbonded Braces Under Centrally Applied Loads[C]//AIJ.Summaries of Technical Papers of 1988 Annual Meeting of the Architectural Institute of Japan.Tokyo:AIJ,1988:237-250.
[5]FUJIMOTO M,WADA A,SAEKI E,et al.A Study on the Unbonded Brace Encased in Buckling Restraining Concrete and Steel Tube[J].Journal of Structural and Construction Engineering,1988,34B:249-258.
[6]WATANABE A,HITOMOI Y,SAEKI E,et al.Properties of Brace Encased in Buckling-restraining Concrete and Steel Tube[C]//Japan Association for Earthquake Disaster Prevention.Proceedings of 9th World Conference on Earthquake Engineering.Tokyo:Japan Assotiation for Earthquake Disaster Prevention,1988:719-724.
[7]CLARK P,AIKEN I,KASAI K,et al.Design Procedures for Buildings Incorporating Hysteretic Damping Devices[C]//SEAOC.Proceedings of the 69th Annual Convention of SEAOC.Sacramento:SEAOC,1999:105-122.
[8]蔡克铨,黄彦智,翁崇兴.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,7(3):1-8.
TSAI Keh-chyuan,HWANG Yean-chih,WENG Chung-shing.Seismic Performance and Applications of Double Tube Buckling-restrained Braces[J].Progress in Steel Building Structures,2005,7(3):1-8.
[9]罗树青,邓长根,牛化宪.抑制屈曲支撑的稳定研究[J].华东船舶工业学院学报:自然科学版,2005,19(3):28-32.
LUO Shu-qing,DENG Chang-gen,NIU Hua-xian.Study on Stability of Buckling Restrained Brace[J].Journal of East China Shipbuilding Institute:Natural Science Edition,2005,19(3):28-32.
[10]李 妍,吴 斌,王倩颖,等.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14.
LI Yan,WU Bin,WANG Qian-ying,et al.An Experimental Study of Anti-buckling Steel Damping-braces[J].China Civil Engineering Journal,2006,39(7):9-14.
[11] LI G Q,SUN F F,CHEN S W,et al.Development of TJ-type Buckling-restrained Braces and Application[C]//LIANG W H,LI Q,GAO B.Proceedings of International Conference on Earthquake Engineering — The 1st Anniversary of Wenchuan Earthquake.Chengdu:Southwest Jiaotong University Press,2009:149-157.
[12]孙飞飞,刘 猛,李国强,等.国产TJ-Ⅰ型屈曲约束支撑的性能研究[J].河北工程大学学报:自然科学版,2009,26(1):5-9.
SUN Fei-fei,LIU Meng,LI Guo-qiang,et al.Improvement and Experimental Study of Domestic TJ-Ⅰ Type Buckling-restrained Brace[J].Journal of Hebei University of Engineering:Natural Science Edition,2009,26(1):5-9.
[13]郭彦林,江磊鑫.型钢组合装配式防屈曲支撑性能及设计方法研究[J].建筑结构,2010,40(1):30-37.
GUO Yan-lin,JIANG Lei-xin.Behavior and Application of Buckling-restrained Braces Assembled with Section Steels[J].Building Structure,2010,40(1):30-37.
[14]郭彦林,江磊鑫.双矩管带肋约束型装配式防屈曲支撑的设计方法[J].建筑科学与工程学报,2010,27(2):67-74.
GUO Yan-lin,JIANG Lei-xin.Design Method of Buckling-restrained Braces Assembled with Dual Ribbed Rectangular Hollow[J].Journal of Architecture and Civil Engineering,2010,27(2):67-74.
[15]周 云,尹绕章,张文鑫,等.钢板装配式屈曲约束支撑性能试验研究[J].建筑结构学报,2014,35(8):37-43.
ZHOU Yun,YIN Rao-zhang,ZHANG Wen-xin,et al.Experimental Study on Hysteretic Performance of Steel-plate Assembled Buckling-restrained Brace[J].Journal of Building Structures,2014,35(8):37-43.
[16]LI G Q,SUN Y Z,JI C,et al.Experimental Study on Two-level Yielding Buckling-restrained Braces[J].Journal of Constructional Steel Research,2019,159:260-269.
[17]GB 50011—2010,建筑抗震设计规范[S].
GB 50011—2010,Code for Seismic Design of Buildings[S].

相似文献/References:

[1].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[2]张永健,王达,黄平明.斜拉桥Π 形主梁剪力滞影响因素分析[J].建筑科学与工程学报,2008,25(01):116.
 ZHANG Yong-jian,WANG Da,HUANG Ping-ming.Effect Factor Analysis of Shear Lag of Cable-stayedBridge with П-shaped Main Girder[J].Journal of Architecture and Civil Engineering,2008,25(06):116.
[3]李瞡,韩大建.索膜结构风振响应的神经网络辅助参数分析方法[J].建筑科学与工程学报,2008,25(04):98.
 LI Jing,HAN Da-jian.Neural Network Aided Parametric Analysis Method of Wind-induced Response for Cable-membrane Structures[J].Journal of Architecture and Civil Engineering,2008,25(06):98.
[4]周绪红,李艳敏,石宇,等.竖向荷载作用下冷弯薄壁型钢墙架柱的承载力[J].建筑科学与工程学报,2006,23(03):7.
 ZHOU Xu-hong,LI Yan-min,SHI Yu,et al.Bearing Capacity of Cold-Formed Thin-WalledSteel Wall Stud Under Vertical Load[J].Journal of Architecture and Civil Engineering,2006,23(06):7.
[5]王元清,张俊光,张 颖,等.铝合金网壳结构盘式节点整体刚度与变形性能的 参数分析[J].建筑科学与工程学报,2019,36(03):16.
 WANG Yuan-qing,ZHANG Jun-guang,ZHANG Ying,et al.Parameter Analysis on Overall Stiffness and Deformation Performance of TEMCOR Joints in Aluminum Alloy Shell Structures[J].Journal of Architecture and Civil Engineering,2019,36(06):16.
[6]黄福云,陈汉伦,杨芳芳,等.超高性能混凝土板受弯承载能力及计算方法试验研究[J].建筑科学与工程学报,2019,36(03):28.
 HUANG Fu-yun,CHEN Han-lun,YANG Fang-fang,et al.Experimental Study on Bending Capacity and Calculation Method of Ultra-high Performance Concrete Slab[J].Journal of Architecture and Civil Engineering,2019,36(06):28.
[7]周德源,刘长勋.车辆撞击作用下RC桥墩动力响应[J].建筑科学与工程学报,2020,37(02):11.[doi:10.19815/j.jace.2019.04028]
 ZHOU De-yuan,LIU Chang-xun.Dynamic Response of RC Bridge Pier Under Vehicle Impact Load[J].Journal of Architecture and Civil Engineering,2020,37(06):11.[doi:10.19815/j.jace.2019.04028]
[8]李 钢,张天昊,董志骞.长耗能梁-偏心支撑机制对中心支撑钢框架结构抗震性能的影响[J].建筑科学与工程学报,2020,37(03):10.[doi:10.19815/j.jace.2019.05058]
 LI Gang,ZHANG Tian-hao,DONG Zhi-qian.Effect of Long-link EBF Mechanism on Seismic Performance of Steel CBF[J].Journal of Architecture and Civil Engineering,2020,37(06):10.[doi:10.19815/j.jace.2019.05058]
[9]郑 宏,徐笑东,王 玮,等.装配式交叉密肋钢板剪力墙参数影响分析[J].建筑科学与工程学报,2020,37(04):52.[doi:10.19815/j.jace.2019.07057]
 ZHENG Hong,XU Xiao-dong,WANG Wei,et al.Analysis on Influence Factors of Assembled Cross-ribbed Steel Plate Shear Wall[J].Journal of Architecture and Civil Engineering,2020,37(06):52.[doi:10.19815/j.jace.2019.07057]
[10]罗小烨,陈宝春,黄福云,等.不同类型桩基支撑的整体桥力学性能[J].建筑科学与工程学报,2020,37(05):151.[doi:10.19815/j.jace.2019.12002]
 LUO Xiao-ye,CHEN Bao-chun,HUANG Fu-yun,et al.Mechanical Property of Integral Bridge Supported by Different Types of Pile Foundations[J].Journal of Architecture and Civil Engineering,2020,37(06):151.[doi:10.19815/j.jace.2019.12002]

备注/Memo

备注/Memo:
收稿日期:2019-01-17
基金项目:“十三五”国家重点研发计划项目(2016YFC0701203)
作者简介:孙瑛志(1993-),男,山东乳山人,工学博士研究生,E-mail:y.z.sun@tongji.edu.cn。
更新日期/Last Update: 2019-11-26