|本期目录/Table of Contents|

[1]王四清,陈 宇,艾辉军,等.基于性能的既有建筑防屈曲支撑抗震加固设计[J].建筑科学与工程学报,2021,38(02):38-46.[doi:10.19815/j.jace.2020.08009]
 WANG Si-qing,CHEN Yu,AI Hui-jun,et al.Performance-based Seismic Design for Existing Building Reinforced with Bucking Restrained Braces[J].Journal of Architecture and Civil Engineering,2021,38(02):38-46.[doi:10.19815/j.jace.2020.08009]
点击复制

基于性能的既有建筑防屈曲支撑抗震加固设计(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年02期
页码:
38-46
栏目:
出版日期:
2021-03-25

文章信息/Info

Title:
Performance-based Seismic Design for Existing Building Reinforced with Bucking Restrained Braces
文章编号:
1673-2049(2021)02-0038-09
作者:
王四清1,陈 宇1,艾辉军1,唐学武2,邵 磊2,毛土明1
1. 湖南省建筑设计院有限公司,湖南 长沙 410006; 2. 湖南省地震局,湖南 长沙 410004
Author(s):
WANG Si-qing1, CHEN Yu1, AI Hui-jun1, TANG Xue-wu2, SHAO Lei2, MAO Tu-ming1
1. Hunan Architectural Design Institute Limited Company, Changsha 410006, Hunan, China; 2. Hunan Earthquake Agency, Changsha 410004, Hunan, China
关键词:
既有建筑 抗震加固 屈曲约束支撑 基于性能 弹塑性时程分析
Keywords:
existing building seismic reinforcement buckling restrained brace performance-based dynamic elastic-plastic time history analysis
分类号:
TU375
DOI:
10.19815/j.jace.2020.08009
文献标志码:
A
摘要:
对于抗震能力低、抗震构造措施普遍不满足现行规范的原非抗震设防区既有建筑,采用消能减震技术加固结构,通过性能化设计方法实现抗震加固目标,可以解决传统加固方法效率低、难以实施等难题。以原非抗震设防区某既有框架结构教学楼加固项目为例,介绍了采用耗能防屈曲支撑提高抗震性能的具体方法和既有建筑基于性能的抗震加固设计流程。结果表明:加固前结构单体中最大的扭转周期比达到了0.96,最大位移比为1.38, 加固后扭转周期比控制为0.84,最大位移比为1.20; 加固前结构小震下构件承载力基本满足要求,但扭转周期比和抗震构造措施不满足现行规范要求,大震下结构会发生严重破坏甚至倒塌; 加固后结构构件承载力能满足7度小震(多遇地震提高1度)要求,小震下防屈曲支撑调整结构抗扭刚度,减小扭转效应,大震下防屈曲支撑屈服耗能,显著提高了结构的抗大震性能; 当结构的抗震性能明显提高时,抗震构造措施要求可适当降低。
Abstract:
For the existing buildings in the original non seismic fortification area with low seismic capacity and seismic structural measures generally do not meet the current codes, the application of energy dissipation technology to strengthen the structure and the realization of seismic reinforcement targets through performance-based design method can solve the problems such as low efficiency and difficulty in implementation of traditional reinforcement methods. Taking the reinforcement project of an existing frame structure teaching building in the original non-seismic fortification area as an example, the method to improve the seismic performance by using bucking restrained braces and the design flow of performance-based seismic reinforcement for the existing building was introduced. The results show that the maximum torsion period ratio is 0.96 and the maximum displacement ratio is 1.38 before reinforcement, and the maximum torsion period ratio is 0.84 and the maximum displacement ratio is 1.20 after reinforcement. Before reinforcement, the bearing capacity of structural members under small earthquakes basically meets the requirements, but the torsional cycle ratio and seismic structural measures do not meet the requirements of current codes, and the structures under large earthquakes will be seriously damaged or even collapse. After reinforcement, the bearing capacity of the structural members can meet the requirement of 7 degrees small earthquake(increasing one degree in frequent earthquakes). The buckling restrained braces adjusts the torsional stiffness of the structure under small earthquake, which reduces the torsional effect. The yield energy dissipation of the buckling restrained braces under large earthquake significantly improves the anti-major earthquake performance of the structure. When the seismic performance of the structure is obviously improved, the requirements of seismic structural measures can be reduced appropriately.

参考文献/References:

[1] GB 18306—2015,中国地震动参数区划图[S].
GB 18306—2015,Seismic Ground Motion Parameters Zonation Map of China[S].
[2]张亚男.既有建筑抗震加固需求与设防对策研究[D].哈尔滨:哈尔滨工业大学,2014.
ZHANG Ya-nan.Research on Seismic Reinforcement Demands and Fortification Strategies for Existing Buildings[D].Harbin:Harbin Institute of Technology,2014.
[3]薛彦涛.设防烈度调整后既有建筑抗震加固对策与方法[J].城市与减灾,2016(3):54-58.
XUE Yan-tao.Countermeasures and Methods for Seismic Strengthening of Existing Buildings After Fortification Intensity Adjustment[J].City and Disaster Reduction,2016(3):54-58.
[4]GB 50023—2009,建筑抗震鉴定标准[S].
GB 50023—2009,Standard for Seismic Appraisal of Buildings[S].
[5]雷 拓,钱 江,刘伯权.既有钢筋混凝土框架结构基于性能的抗震评估[J].工程抗震与加固改造,2013,35(3):113-120.
LEI Tuo,QIAN Jiang,LIU Bo-quan.Performance-based Seismic Evaluation of Existing RC Frame Structures[J].Earthquake Resistant Engineering and Retrofitting,2013,35(3):113-120.
[6]张 宇,李宏男,李 钢.既有钢筋混凝土结构抗震设防目标与性能评估[J].建筑结构学报,2013,34(7):29-39.
ZHANG Yu,LI Hong-nan,LI Gang.Seismic Performance Objectives and Evaluation of Existing Reinforced Concrete Structures[J].Journal of Building Structures,2013,34(7):29-39.
[7]李英民,刘建伟,周自强.基于性能的抗震加固方法在框架结构中的应用[J].建筑结构,2012,42(7):88-92.
LI Ying-min,LIU Jian-wei,ZHOU Zi-qiang.Application of Performance-based Seismic Retrofit for a Frame Building[J].Building Structure,2012,42(7):88-92.
[8]张 瀑,田中礼治,鲁兆红,等.多层混凝土结构的抗震加固方法与实例[M].北京:中国建筑工业出版社,2012.
ZHANG Pu,TANAKA Reiji,LU Zhao-hong,et al.Seismic Strengthening Methods and Examples of Multi-storey Concrete Structures[M].Beijing:China Architecture & Building Press,2012.
[9]湘2017G901,既有民用建筑抗震加固:混凝土结构[S].
Hunan2017G901,Seismic Strengthening of Existing Civil Buildings:Concrete Structures[S].
[10]王秀丽,李 涛,金建民,等.高烈度区新型钢筋砼框架的抗震性能[J].兰州理工大学学报,2009(2):105-109.
WANG Xiu-li,LI Tao,JIN Jian-min,et al.Aseismatic Behavior of New RC Frames for High Seismic-intensity Regions[J].Journal of Lanzhou University of Technology,2009(2):105-109.
[11]胡宝琳,李国强,孙飞飞.屈曲约束支撑体系的研究现状及其国内外应用[J].四川建筑科学研究,2007,33(4):9-13.
HU Bao-lin,LI Guo-qiang,SUN Fei-fei.The Current Research and Application of Home and Abroad of Bucking-restrained Brace[J].Sichuan Building Science,2007,33(4):9-13.
[12]高 鹏,叶献国,徐 勤.某小学教学楼的屈曲约束支撑抗震加固设计[J].工业建筑,2013,43(3):129-132,78.
GAO Peng,YE Xian-guo,XU Qin.Design of BRBS in Seismic Retrofitting of the Classroom Building in a Primary School[J].Industrial Construction,2013,43(3):129-132,78.
[13]GB 50223—2008,建筑工程抗震设防分类标准[S].
GB 50223—2008,Standard for Classification of Seismic Protection of Building Constructions[S].
[14]GB 50011—2010,建筑抗震设计规范[S].
GB 50011—2010,Code for Seismic Design of Buildings[S].
[15]周力强,王玉山,廖 欢.既有结构的性能化消能减震加固分析[J].石河子大学学报:自然科学版,2019,37(3):310-316.
ZHOU Li-qiang,WANG Yu-shan,LIAO Huan.Analysis of Seismic Performance Design in Existing Structure Reinforced with Energy Dissipation[J].Journal of Shihezi University:Natural Science,2019,37(3):310-316.
[16]同济大学多高层钢结构及钢结构抗火研究室,上海蓝科钢结构技术开发有限责任公司.TJ屈曲约束支撑设计手册[M].4版.上海:同济大学出版社,2012.
Tongji University Research Group for Muti-storey and Tall Steel Buildings and Fire-resistance of Steel Structures,Shanghai Lanke Steel Structure Technology Co.,Ltd.Design Manual for TJ Bucking Restrained Brace[M].4th ed.Shanghai:Tongji University Press,2012.
[17]T/CECS 547—2018,建筑消能减震加固技术规程[S].
T/CECS 547—2018,Technical Specification for Seismic Energy Dissipation of Strengthening Structure[S].
[18]DB 34/T 5069—2017,屈曲约束支撑结构技术规程[S].
DB 34/T 5069—2017,Technical Specification for Buckling-restrained Brace Structures[S].
[19]孙 彬,牛荻涛,董振平.在役结构抗震评估地震作用取值研究[J].西安建筑科技大学学报:自然科学版,2003,35(4):312-316.
SUN Bin,NIU Di-tao,DONG Zhen-ping.Research on Earthquake Action for Seismic Assessment of Existing Structures[J].Journal of Xi'an University of Architecture & Technology:Natural Science Edition,2003,35(4):312-316.
[20]白雪霜,程绍革.现有建筑抗震鉴定地震动参数取值研究[J].建筑科学,2014,30(5):1-5.
BAI Xue-shuang,CHENG Shao-ge.Study on the Ground Motion Parameters for Seismic Appraisal of Available Buildings[J].Building Science,2014,30(5):1-5.
[21]张 谨,杨律磊.动力弹塑性分析在结构设计中的理解与应用[M].北京:中国建筑工业出版社,2016.
ZHANG Jin,YANG Lv-lei.Comprehension and Application of Dynamic Elasto-plastic Analysis on Structural Design[M].Beijing:China Architecture & Building Press,2016.
[22]孟建国.基于全寿命设计的钢筋混凝土结构安全度研究与应用[D].南京:东南大学,2016.
MENG Jian-guo.Reinforced Concrete Structure Reliability Research and Application Based on Life-cycle Design[D].Nanjing:Southeast University,2016.

相似文献/References:

[1]曹海韵,潘鹏,叶列平,等.混凝土框架摇摆墙结构体系的抗震性能分析[J].建筑科学与工程学报,2011,28(01):64.
 CAO Hai-yun,PAN Peng,YE Lie-ping,et al.Seismic Performance Analysis of RC Frame Rocking-wall Structure System[J].Journal of Architecture and Civil Engineering,2011,28(02):64.

备注/Memo

备注/Memo:
收稿日期:2020-08-10
基金项目:湖南省重点研发计划项目(2017SK2260)
作者简介:王四清(1965-),男,湖南长沙人,教授级高级工程师,E-mail:AG5678@163.com。
更新日期/Last Update: 2021-03-20