|本期目录/Table of Contents|

[1]王景玄,李秋颖,王文琦.圆钢管混凝土柱-钢筋桁架组合梁节点抗连续倒塌机制及参数分析[J].建筑科学与工程学报,2022,39(03):84-91.[doi:10.19815/j.jace.2021.05040]
 WANG Jing-xuan,LI Qiu-ying,WANG Wen-qi.Anti-progressive Collapse Mechanism and Parameter Analysis of Circular CFST Column and Steel Bar Truss Composite Beam Joint[J].Journal of Architecture and Civil Engineering,2022,39(03):84-91.[doi:10.19815/j.jace.2021.05040]
点击复制

圆钢管混凝土柱-钢筋桁架组合梁节点抗连续倒塌机制及参数分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年03期
页码:
84-91
栏目:
出版日期:
2022-05-30

文章信息/Info

Title:
Anti-progressive Collapse Mechanism and Parameter Analysis of Circular CFST Column and Steel Bar Truss Composite Beam Joint
文章编号:
1673-2049(2022)03-0084-08
作者:
王景玄,李秋颖,王文琦
(兰州理工大学 土木工程学院,甘肃 兰州 730050)
Author(s):
WANG Jing-xuan, LI Qiu-ying, WANG Wen-qi
(School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)
关键词:
钢管混凝土 钢筋桁架组合板 连续倒塌 机理分析 参数分析
Keywords:
concrete-filled steel tube steel bar truss composite slab progressive collapse mechanism analysis parameter analysis
分类号:
TU398.9
DOI:
10.19815/j.jace.2021.05040
文献标志码:
A
摘要:
为研究钢筋桁架组合梁对钢管混凝土结构抗连续倒塌性能的影响,采用ABAQUS建立圆钢管混凝土柱-钢筋桁架组合梁节点数值模型,分析中柱失效工况下该类节点的破坏机理和抗力计算曲线,以及钢筋桁架高度、混凝土强度、钢筋强度等主要参数对组合节点抗连续倒塌能力的影响。结果表明:相比钢管混凝土柱-RC组合梁节点,钢筋桁架组合梁节点的梁机制和悬链线机制峰值承载力分别提高了12.5%和10%; 因钢筋桁架在下弦钢筋屈服后上弦钢筋仍可以提供拉力,使得钢梁下翼缘断裂后承载力可以继续提高,表现出良好的抗连续倒塌能力; 钢筋桁架高度和钢筋桁架钢筋强度主要对节点梁机制峰值承载力与极限承载力提升较显著,对悬链线机制峰值承载力影响较小,楼板混凝土强度对节点各阶段的承载力影响较小,并且会降低节点延性; 综合对比分析不同参数下节点的抗力指标和位移延性指标发现,增加钢筋桁架高度和钢筋强度对节点的抗连续倒塌极限承载力具有有利影响,在工程设计和应用中应予以考虑。
Abstract:
In order to study the influence of steel truss composite beam on the progressive collapse resistance of concrete-filled steel tubular(CFST)structure, ABAQUS was used to establish the numerical model of the joint of CFST column and steel bar truss composite beam. The failure mechanism and resistance calculation curve of the joint under the failure condition of middle column were analyzed, and the influences of main parameters such as the height of steel truss, concrete strength and steel strength on the progressive collapse resistance of composite joint were analyzed. The results show that compared with CFST column-RC composite beam joints, the peak bearing capacities of beam mechanism and catenary mechanism of reinforced truss composite beam joints increase by 12.5% and 10%, respectively. Since the steel bar truss can still provide tension after the yield of the lower chord steel bar, the bearing capacity of the lower flange of the steel beam can continue improving after the fracture, showing good progressive collapse resistance. The height of steel truss and the strength of steel truss mainly improve the peak bearing capacity and ultimate bearing capacity of joint beam mechanism, but have little effect on the peak bearing capacity of catenary mechanism. The strength of floor slab concrete has little effect on the bearing capacity of each stage of joint, and can reduce the ductility of joint. By comparing and analyzing the resistance index and displacement ductility index of joints under different parameters, it is found that the increases of height and strength of steel truss have beneficial effects on the ultimate bearing capacity of joints, which should be considered in engineering design and application.

参考文献/References:

[1] Eurocode 1:Actions on Structures. Part 1-7:General Actions — Accidental Actions:EN 1991-1-7:2006[S].Brussels:CEN,2006.
[2]Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects:GSA 2016 [S].Washington DC:General Services Administration,2016.
[3]Design of Building to Resist Progressive Collapse:UFC 4-023-03[S].Washington DC:Department of Defense,2016.
[4]建筑结构抗倒塌设计规范:CECS 392:2014[S].北京:中国计划出版社,2014.
Code for Anti-collapse Design of Building Structures:CECS 392:2014[S].Beijing:China Planning Press,2014.
[5]ADAM J M,PARISI F,SAGASETA J,et al.Research and Practice on Progressive Collapse and Robustness of Building Structures in the 21st Century[J].Engineering Structures,2018,173:122-149.
[6]ZHONG W H,TAN Z,TIAN L M,et al.Collapse Resistance of Composite Beam-column Assemblies with Unequal Spans Under an Internal Column-removal Scenario[J].Engineering Structures,2020,206:110143.
[7]MENG B,ZHONG W H,HAO J P.Anti-progressive Collapse Behavior of Beam-to-column Assemblies with Bolted-angle Connections Under Different Span Ratios[J].Advances in Structural Engineering,2018,21(6):891-905.
[8]QIU L,LIN F,WU K C.Improving Progressive Collapse Resistance of RC Beam-column Subassemblages Using External Steel Cables[J].Journal of Performance of Constructed Facilities,2020,34(1):04019079.
[9]王景玄,杨 永,周 侃,等.角柱失效下钢管混凝土柱-组合梁框架抗连续倒塌能力研究[J].工程力学,2022,39(5):105-118.
WANG Jing-xuan,YANG Yong,ZHOU Kan,et al.Research on Progressive Collapse Resistance Capacity of Composite Frame with CFST Columns Under Corner Column Removal Scenario[J].Engineering Mechanics,2022,39(5):105-118.
[10]ZHENG L,WANG W D,XIAN W.Experimental and Numerical Investigation on the Anti-progressive Collapse Performance of Fabricated Connection with CFST Column and Composite Beam[J].Engineering Structures,2022,256:114061.
[11]WANG J X,YANG Y,XIAN W,et al.Progressive Collapse Mechanism Analysis of Concrete-filled Square Steel Tubular Column to Steel Beam Joint with Bolted-welded Hybrid Connection[J].International Journal of Steel Structures,2020,20(5):1618-1635.
[12]高佳明,刘伯权,黄 华,等.带板钢筋混凝土框架连续倒塌理论分析[J].工程力学,2018,35(7):117-126.
GAO Jia-ming,LIU Bo-quan,HUANG Hua,et al.Theoretical Analysis on the Progressive Collapse of RC Frame Structures with Slabs[J].Engineering Mechanics,2018,35(7):117-126.
[13]王俊杰,王 伟,孙 昕.压型钢板组合梁中柱子结构的抗连续倒塌试验[J].工程力学,2017,34(增):149-153,178.
WANG Jun-jie,WANG Wei,SUN Xin.Experimental Behavior of Composite Beam-column Joints with Steel Profiled Decking in a Middle-column-removal Scenario[J].Engineering Mechanics,2017,34(S):149-153,178.
[14]陈安英,完海鹰,孙 磊,等.钢筋桁架组合楼板抗弯性能试验研究[J].建筑结构,2015,45(8):59-63,90.
CHEN An-ying,WAN Hai-ying,SUN Lei,et al.Experimental Study on Bending Behavior of Steel Bar Truss Composite Slab[J].Building Structure,2015,45(8):59-63,90.
[15]邓莎莎.现浇钢筋桁架混凝土楼板试验与理论研究[D].重庆:重庆交通大学,2017.
DENG Sha-sha.Experimental and Theoretical Study on Cast-in-place Steel Bar Truss Concrete Slab[D].Chongqing:Chongqing Jiaotong University,2017.
[16]韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社,2016.
HAN Lin-hai.Concrete Filled Steel Tubular Structures:Theory and Practice[M].3rd ed.Beijing:Science Press,2016.
[17]ESMAEILY A,XIAO Y.Behavior of Reinforced Concrete Columns Under Variable Axial Loads:Analysis[J].ACI Structural Journal,2005,102(5):736-744.
[18]KIM J,SHIN W S.Retrofit of RC Frames Against Progressive Collapse Using Prestressing Tendons[J].The Structural Design of Tall and Special Buildings,2013,22(4):349-361.

相似文献/References:

[1]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(06):1.
 LIU Yong-jian,JIANG Lei,ZHANG Ning.Longitudinal Allowable Stress of Steel Tube in Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2015,32(03):1.
[2]李文贵,罗智予,龙 初,等.钢管混凝土与钢管再生骨料混凝土抗冲击性能研究综述[J].建筑科学与工程学报,2016,33(04):25.
 LI Wen-gui,LUO Zhi-yu,LONG Chu,et al.Review of Impact Resistance of CFST and RACFST[J].Journal of Architecture and Civil Engineering,2016,33(03):25.
[3]赵金钢,赵人达,占玉林.钢管混凝土徐变效应随机性灵敏度分析[J].建筑科学与工程学报,2016,33(04):44.
 ZHAO Jin-gang,ZHAO Ren-da,ZHAN Yu-lin.Randomness Sensitivity Analysis of Creep Effect for Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2016,33(03):44.
[4]晏巧玲,陈宝春,薛建阳.钢管混凝土平缀管格构柱换算长细比计算方法[J].建筑科学与工程学报,2016,33(06):98.
 YAN Qiao-ling,CHEN Bao-chun,XUE Jian-yang.Calculation Method on Equivalent Slenderness Ratio of Concrete-filled Steel Tube Battened Columns[J].Journal of Architecture and Civil Engineering,2016,33(03):98.
[5]黄卿维,余印根,韦建刚,等.钢管混凝土拱桥技术状况检测与评定[J].建筑科学与工程学报,2011,28(03):34.
 HUANG Qing-wei,YU Yin-gen,WEI Jian-gang,et al.Technical Detection and Assessment of Concrete-filled Steel Tubular Arch Bridge[J].Journal of Architecture and Civil Engineering,2011,28(03):34.
[6]檀永杰,徐波,吴智敏,等.基于超声对测法的钢管混凝土脱空检测试验[J].建筑科学与工程学报,2012,29(02):102.
 TAN Yong-jie,XU Bo,WU Zhi-min,et al.Experiment on Void Area Testing of Concrete-filled Steel Tube Based on Ultrasonic Testing Method[J].Journal of Architecture and Civil Engineering,2012,29(03):102.
[7]魏锦,赵均海,刘彦东,等.钢管混凝土轴压短柱的极限承载力分析[J].建筑科学与工程学报,2008,25(03):81.
 WEI Jin,ZHAO Jun-hai,LIU Yan-dong,et al.Analysis of Ultimate Bearing Capacity of Concrete-filled Steel Tubular Axial Compression Short Columns[J].Journal of Architecture and Civil Engineering,2008,25(03):81.
[8]高婧,陈宝春.波形钢板钢管混凝土柱的极限承载力[J].建筑科学与工程学报,2008,25(04):47.
 GAO Jing,CHEN Bao-chun.Ultimate Load Carrying Capacity of Concrete-filled Steel Tubular Column with Corrugated Steel Webs[J].Journal of Architecture and Civil Engineering,2008,25(03):47.
[9]王毅红,郭增辉,李先顺,等.带有芯钢管的钢管混凝土节点的受力机理[J].建筑科学与工程学报,2007,24(01):64.
 WANG Yi-hong,GUO Zeng-hui,LI Xian-shun,et al.Bearing Mechanism of Concrete-filled Steel Tubular Joint with Core Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(03):64.
[10]宋兵,王湛.高强混凝土自收缩对钢管混凝土轴压力学性能的影响[J].建筑科学与工程学报,2007,24(02):59.
 SONG Bing,WANG Zhan.Influences of Autogenous Shrinkage of High-strength Concrete on AxialCompression Mechanics Behavior of Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(03):59.

备注/Memo

备注/Memo:
收稿日期:2021-05-17
基金项目:国家自然科学基金项目(52068047,51708270); 甘肃省青年科技基金计划项目(20JR5RA437); 甘肃省建设厅科技攻关项目(JK2021-16)
作者简介:王景玄(1986-),男,甘肃会宁人,副教授,工学博士,E-mail:cewangjx@lut.edu.cn。
更新日期/Last Update: 2022-05-30