[1] 李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
LI Hong-nan,XIAO Shi-yun,HUO Lin-sheng.Damage Investigation and Analysis of Engineering Structures in the Wenchuan Earthquake[J].Journal of Building Structures,2008,29(4):10-19.
[2]张 超,翁大根.震损建筑抗震鉴定加固中地震作用取值研究[J].建筑结构学报,2013,34(2):61-68.
ZHANG Chao,WENG Da-gen.Research on Earthquake Action for Seismic Appraisal and Retrofit of Earthquake-damaged Buildings[J].Journal of Building Structures,2013,34(2):61-68.
[3]ZHANG J,STANG H.Applications of Stress Crack Width Relationship in Predicting the Flexural Behavior of Fibre-reinforced Concrete[J].Cement and Concrete Research,1998,28(3):439-452.
[4]GRAYBEAL B A,PHARES B M,ROLANDER D D,et al.Visual Inspection of Highway Bridges[J].Journal of Nondestructive Evaluation,2002,21(3):67-83.
[5]耿 飞,解建光,钱春香.图像分析技术对混凝土裂缝的定量评价[J].混凝土,2005(5):78-80,87.
GENG Fei,XIE Jian-guang,QIAN Chun-xiang.Image Analysis Technique for Quantitative Evaluation of Cracks in Concrete[J].Concrete,2005(5):78-80,87.
[6]ZAKERI H,NEJAD F M,FAHIMIFAR A.Image Based Techniques for Crack Detection,Classification and Quantification in Asphalt Pavement:A Review[J].Archives of Computational Methods in Engineering,2017,24(4):935-977.
[7]PRASANNA P,DANA K J,GUCUNSKI N,et al.Automated Crack Detection on Concrete Bridges[J].IEEE Transactions on Automation Science and Engineering,2016,13(2):591-599.
[8]WANG S F,QIU S,WANG W J,et al.Cracking Classification Using Minimum Rectangular Cover-based Support Vector Machine[J].Journal of Computing in Civil Engineering,2017,31(5):04017027.
[9]LOWE D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[10]DALAL N,TRIGGS B.Histograms of Oriented Gradients for Human Detection[C]//IEEE.Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE,2005:886-893.
[11]VAPNIK V.The Nature of Statistical Learning Theory[M].Berlin:Springer Science & Business Media,2013.
[12]FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al.Object Detection with Discriminatively Trained Part-based Models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645.
[13]SANKARASRINIVASAN S,BALASUBRAMANIAN E,KARTHIK K,et al.Health Monitoring of Civil Structures with Integrated UAV and Image Processing System[J].Procedia Computer Science,2015,54:508-515.
[14]LIM R S,LA H M,SHENG W H.A Robotic Crack Inspection and Mapping System for Bridge Deck Maintenance[J].IEEE Transactions on Automation Science and Engineering,2014,11(2):367-378.
[15]LIU Y F,NIE X,FAN J S,et al.Image-based Crack Assessment of Bridge Piers Using Unmanned Aerial Vehicles and Three-dimensional Scene Reconstruction[J].Computer-aided Civil and Infrastructure Engineering,2020,35(5):511-529.
[16]HINTON G E,SALAKHUTDINOV R R.Reducing the Dimensionality of Data with Neural Networks[J].Science,2006,313(5786):504-507.
[17]卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理,2016,31(1):1-17.
LU Hong-tao,ZHANG Qin-chuan.Applications of Deep Convolutional Neural Network in Computer Vision[J].Journal of Data Acquisition and Processing,2016,31(1):1-17.
[18]BENGIO Y.Learning Deep Architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-56.
[19]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based Learning Applied to Document Recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[20]MAKANTASIS K,PROTOPAPADAKIS E,DOULAMIS A,et al.Deep Convolutional Neural Networks for Efficient Vision Based Tunnel Inspection[C]//IEEE.Proceedings of the 2015 IEEE International Conference on Intelligent Computer Communication and Processing.Cluj-napoca:IEEE,2015:335-342.
[21]PARK J K,KWON B K,PARK J H,et al.Machine Learning-based Imaging System for Surface Defect Inspection[J].International Journal of Precision Engineering and Manufacturing-green Technology,2016,3(3):303-310.
[22]YOKOYAMA S,MATSUMOTO T.Development of an Automatic Detector of Cracks in Concrete Using Machine Learning[J].Procedia Engineering,2017,171:1250-1255.
[23]DUCHI J,HAZAN E,SINGER Y.Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[J].Journal of Machine Learning Research,2011,12:2121-2159.
[24]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[J].arXiv,2014:1412.6980.
[25]NAIR V,HINTON G E.Rectified Linear Units Improve Restricted Boltzmann Machines[C]//ICML.Proceedings of the 27th International Conference on International Conference on Machine Learning.Haifa:ICML,2010:807-814.
[26]SCHERER D,MULLER A,BEHNKE S.Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition[C]//ENNS.Proceedings of the 20th International Conference on Artificial Neural Networks.Berlin:Springer,2010:92-101.
[27]KOUSHIK J.Understanding Convolutional Neural Networks[J].arXiv,2016:1605.09081.
[28]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017,60(6):84-90.
[29]DENG J,DONG W,SOCHER R,et al.ImageNet:A Large-scale Hierarchical Image Database[C]//IEEE.Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition.Miami:IEEE,2009:248-255.
[30]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[J].arXiv,2014:1409.1556.
[31]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//IEEE.Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[32]SZEGEDY C,LIU W,JIA Y Q,et al.Going Deeper with Convolutions[C]//IEEE.Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1-9.
[33]ZAGORUYKO S,KOMODAKIS N.Wide Residual Networks[J].arXiv,2016:1605.07146.
[34]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely Connected Convolutional Networks[C]//IEEE.Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:2261-2269.
[35]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning[C]//AAAI.Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence.San Francisco:AAAI,2017:4278-4284.
[36]XIE S N,GIRSHICK R,DOLLAR P,et al.Aggregated Residual Transformations for Deep Neural Networks[C]//IEEE.Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:5987-5995.
[37]HU J,SHEN L,SUN G.Squeeze-and-excitation Networks[C]//IEEE.Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:7132-7141.
[38]刘宇飞,樊健生,聂建国,等.结构表面裂缝数字图像法识别研究综述与前景展望[J].土木工程学报,2021,54(6):79-98.
LIU Yu-fei,FAN Jian-sheng,NIE Jian-guo,et al.Review and Prospect of Digital-image-based Crack Detection of Structure Surface[J].China Civil Engineering Journal,2021,54(6):79-98.
[39]HSIEH Y A,TSAI Y J.Machine Learning for Crack Detection:Review and Model Performance Comparison[J].Journal of Computing in Civil Engineering,2020,34(5):04020038.
[40]李旭冬,叶 茂,李 涛.基于卷积神经网络的目标检测研究综述[J].计算机应用研究,2017,34(10):2881-2886,2891.
LI Xu-dong,YE Mao,LI Tao.Review of Object Detection Based on Convolutional Neural Networks[J].Application Research of Computers,2017,34(10):2881-2886,2891.
[41]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//IEEE.Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:580-587.
[42]HE K M,ZHANG X Y,REN S Q,et al.Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[43]GIRSHICK R.Fast R-CNN[C]//IEEE.Proceedings of the 2015 IEEE International Conference on Computer Vision.Santiago:IEEE,2015:1440-1448.
[44]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[45]DAI J F,LI Y,HE K M,et al.R-FCN:Object Detection Via Region-based Fully Convolutional Networks[J].arXiv,2016:1605.06409.
[46]HE K M,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE.Proceedings of the 2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:2980-2988.
[47]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-time Object Detection[C]//IEEE.Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788.
[48]REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//IEEE.Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6517-6525.
[49]REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv,2018:1804.02767.
[50]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal Speed and Accuracy of Object Detection[J].arXiv,2020:2004.10934.
[51]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector[C]//LEIBE B,MATAS J,SEBE N,et al.Computer Vision — ECCV 2016.Cham:Springer,2016:21-37.
[52]JEONG J,PARK H,KWAK N.Enhancement of SSD by Concatenating Feature Maps for Object Detection[J].arXiv,2017:1705.09587.
[53]FU C Y,LIU W,RANGA A,et al.DSSD:Deconvolutional Single Shot Detector[J].arXiv,2017:1701.06659.
[54]SHEN Z Q,LIU Z,LI J G,et al.DSOD:Learning Deeply Supervised Object Detectors from Scratch[C]//IEEE.Proceedings of the 2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:1937-1945.
[55]LI Z,ZHOU F.FSSD:Feature Fusion Single Shot Multibox Detector[J].arXiv,2017:1712.00960.
[56]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//IEEE.Proceedings of the 2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:2980-2988.
[57]LAW H,DENG J.CornerNet:Detecting Objects as Paired Keypoints[J].International Journal of Computer Vision,2020,128(3):642-656.
[58]DUAN K W,BAI S,XIE L X,et al.CenterNet:Keypoint Triplets for Object Detection[C]//IEEE.Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:6568-6577.
[59]TAN M X,PANG R M,LE Q V.EfficientDet:Scalable and Efficient Object Detection[C]//IEEE.Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:10778-10787.
[60]CHA Y J,CHOI W,BUYUKOZTURK O.Deep Learning-based Crack Damage Detection Using Convolutional Neural Networks[J].Computer-aided Civil and Infrastructure Engineering,2017,32(5):361-378.
[61]BECKMAN G H,POLYZOIS D,CHA Y J.Deep Learning-based Automatic Volumetric Damage Quantification Using Depth Camera[J].Automation in Construction,2019,99:114-124.
[62]DORAFSHAN S,THOMAS R J,MAGUIRE M.Comparison of Deep Convolutional Neural Networks and Edge Detectors for Image-based Crack Detection in Concrete[J].Construction and Building Materials,2018,186:1031-1045.
[63]韩晓健,赵志成.基于计算机视觉技术的结构表面裂缝检测方法研究[J].建筑结构学报,2018,39(增1):418-427.
HAN Xiao-jian,ZHAO Zhi-cheng.Structural Surface Crack Detection Method Based on Computer Vision Technology[J].Journal of Building Structures,2018,39(S1):418-427.
[64]王丽苹,高瑞贞,张京军,等.基于卷积神经网络的混凝土路面裂缝检测[J].计算机科学,2019,46(增2):584-589.
WANG Li-ping,GAO Rui-zhen,ZHANG Jing-jun,et al.Crack Detection of Concrete Pavement Based on Convolutional Neural Network[J].Computer Science,2019,46(S2):584-589.
[65]王 超,贾 贺,张社荣,等.基于图像的混凝土表面裂缝量化高效识别方法[J].水力发电学报,2021,40(3):134-144.
WANG Chao,JIA He,ZHANG She-rong,et al.Image-based Quantitative and Efficient Identification Method for Concrete Surface Cracks[J].Journal of Hydroelectric Engineering,2021,40(3):134-144.
[66]ALI L,ALNAJJAR F,JASSMI H A,et al.Performance Evaluation of Deep CNN-based Crack Detection and Localization Techniques for Concrete Structures[J].Sensors,2021,21(5):1688.
[67]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the Inception Architecture for Computer Vision[C]//IEEE.Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:2818-2826.
[68]GUAN S Q,LEI M,LU H.A Steel Surface Defect Recognition Algorithm Based on Improved Deep Learning Network Model Using Feature Visualization and Quality Evaluation[J].IEEE Access,2020,8:49885-49895.
[69]KIM I H,JEON H,BAEK S C,et al.Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle[J].Sensors,2018,18(6):1881.
[70]KRIZHEVSKY A,HINTON G.Learning Multiple Layers of Features From Tiny Images[R].Toronto:University of Toronto,2009.
[71]CHA Y J,CHOI W,SUH G,et al.Autonomous Structural Visual Inspection Using Region-based Deep Learning for Detecting Multiple Damage Types[J].Computer-aided Civil and Infrastructure Engineering,2018,33(9):731-747.
[72]ZEILER M D,FERGUS R.Visualizing and Understanding Convolutional Networks[C]//FLEET D,PAJDLA T,SCHIELE B,et al.Computer Vision — ECCV 2014:Springer,2014:818-833.
[73]CAI Z W,VASCONCELOS N.Cascade R-CNN:High Quality Object Detection and Instance Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(5):1483-1498.
[74]JIANG S,ZHANG J.Real-time Crack Assessment Using Deep Neural Networks with Wall-climbing Unmanned Aerial System[J].Computer-aided Civil and Infrastructure Engineering,2020,35(6):549-564.
[75]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J].arXiv,2017:1704.04861.
[76]HUANG J,RATHOD V,SUN C,et al.Speed/Accuracy Trade-offs for Modern Convolutional Object Detectors[C]//IEEE.Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:7310-7311.
[77]ZHANG C B,CHANG C C,JAMSHIDI M.Bridge Damage Detection Using a Single-stage Detector and Field Inspection Images[J].arXiv,2018:1812.10590.
[78]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//IEEE.Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:936-944.
[79]WU G F,SUN X M,ZHOU L P,et al.Research on Crack Detection Algorithm of Asphalt Pavement[C]//IEEE.Proceedings of the 2015 IEEE International Conference on Information and Automation.Lijiang:IEEE,2015:647-652.
[80]DUNG C V,ANH L D.Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network[J].Automation in Construction,2019,99:52-58.
[81]LONG J,SHELHAMER E,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[C]//IEEE.Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:3431-3440.
[82]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional Networks for Biomedical Image Segmentation[C]//MICCAI.Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015:234-241.
[83]YE X W,JIN T,CHEN P Y.Structural Crack Detection Using Deep Learning-based Fully Convolutional Networks[J].Advances in Structural Engineering,2019,22(16):3412-3419.
[84]SHI Y,CUI L M,QI Z Q,et al.Automatic Road Crack Detection Using Random Structured Forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445.
[85]CHAMBON S,MOLIARD J M.Automatic Road Pavement Assessment with Image Processing:Review and Comparison[J].International Journal of Geophysics,2011,2011:989354.
[86]LI S Y,ZHAO X F,ZHOU G Y.Automatic Pixel-level Multiple Damage Detection of Concrete Structure Using Fully Convolutional Network[J].Computer-aided Civil and Infrastructure Engineering,2019,34(7):616-634.
[87]BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:A Deep Convolutional Encoder-decoder Architecture for Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[88]MENG X Y.Concrete Crack Detection Algorithm Based on Deep Residual Neural Networks[J].Scientific Programming,2021,2021:3137083.
[89]MIAO Z H,JI X D,OKAZAKI T,et al.Pixel-level Multicategory Detection of Visible Seismic Damage of Reinforced Concrete Components[J].Computer-aided Civil and Infrastructure Engineering,2021,36(5):620-637.
[90]YE X W,JIN T,LI Z X,et al.Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks[J].Journal of Structural Engineering,2021,147(11):04721008.
[91]YANG F,ZHANG L,YU S,et al.Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(4):1525-1535.
[92]NI F T,ZHANG J,CHEN Z Q.Pixel-level Crack Delineation in Images with Convolutional Feature Fusion[J].Structural Control and Health Monitoring,2019,26(1):e2286.
[93]GUO J J,WANG Q,LI Y T.Evaluation-oriented Facade Defects Detection Using Rule-based Deep Learning Method[J].Automation in Construction,2021,131:103910.
[94]KIM B,CHO S.Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model[J].Applied Sciences,2020,10(22):8008.
[95]LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common Objects in Context[C]//FLEET D,PAJDLA T,SCHIELE B,et al.Computer Vision — ECCV 2014.Cham:Springer,2014:740-755.
[96]DAIS D,BAL I E,SMYROU E,et al.Automatic Crack Classification and Segmentation on Masonry Surfaces Using Convolutional Neural Networks and Transfer Learning[J].Automation in Construction,2021,125:103606.
[97]DUNG C V,SEKIYA H,HIRANO S,et al.A Vision-based Method for Crack Detection in Gusset Plate Welded Joints of Steel Bridges Using Deep Convolutional Neural Networks[J].Automation in Construction,2019,102:217-229.
[98]LIU Y,HOU M,LI A,et al.Automatic Detection of Timber-cracks in Wooden Architectural Heritage Using Yolov3 Algorithm[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,2020:1471-1476.
[99]LI Y T,BAO T F,XU B,et al.A Deep Residual Neural Network Framework with Transfer Learning for Concrete Dams Patch-level Crack Classification and Weakly-supervised Localization[J].Measurement,2022,188:110641.
[100]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative Adversarial Nets[J].arXiv,2014:1406.2661.
[101]HAO Z Z,LI Z Y,REN F J,et al.Strip Steel Surface Defects Classification Based on Generative Adversarial Network and Attention Mechanism[J].Metals,2022,12(2):311.
[102]HE Y,SONG K C,DONG H W,et al.Semi-supervised Defect Classification of Steel Surface Based on Multi-training and Generative Adversarial Network[J].Optics and Lasers in Engineering,2019,122:294-302.
[103]GERMAN S,JEON J S,ZHU Z,et al.Machine Vision-enhanced Postearthquake Inspection[J].Journal of Computing in Civil Engineering,2013,27(6):622-634.
[104]YOON S,SPENCER B F,LEE S,et al.A Novel Approach to Assess the Seismic Performance of Deteriorated Bridge Structures by Employing UAV-based Damage Detection[J].Structural Control and Health Monitoring,2022:e2964.
[1]薛刚,王崇阁.基于能量法的简支钢梁损伤识别试验及有限元分析[J].建筑科学与工程学报,2014,31(03):112.
XUE Gang,WANG Chong-ge.Damage Identification Test and Finite Element Analysis of Simply Supported Steel Beam Based on Energy Dissipation Method[J].Journal of Architecture and Civil Engineering,2014,31(04):112.
[2]李宏男,林世伟,伊廷华.基于静力虚拟变形法的结构损伤识别研究[J].建筑科学与工程学报,2016,33(05):1.
LI Hong-nan,LIN Shi-wei,YI Ting-hua.Study on Structural Damage Identification by Static Virtual Distortion Method[J].Journal of Architecture and Civil Engineering,2016,33(04):1.
[3]吴 多,刘来君,张筱雨,等.基于曲率模态曲线变化的桥梁损伤识别[J].建筑科学与工程学报,2018,35(02):119.
WU Duo,LIU Lai-jun,ZHANG Xiao-yu,et al.Bridge Damage Identification Based on Curvature-mode Curve[J].Journal of Architecture and Civil Engineering,2018,35(04):119.
[4]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(06):29.
LI Shu-jin,ZHAO Yuan,KONG Fan,et al.Application of Convolutional Neural Network in Structural
Damage Identification[J].Journal of Architecture and Civil Engineering,2020,37(04):29.