|本期目录/Table of Contents|

[1]游 颖,王 建,刘学刚,等.改进BP神经网络的钢结构应力缺失数据重构[J].建筑科学与工程学报,2022,39(04):166-173.[doi:10.19815/j.jace.2021.11130]
 YOU Ying,WANG Jian,LIU Xue-gang,et al.Reconstruction of Missing Stress Data for Steel Structure Based on Improved BP Neural Network[J].Journal of Architecture and Civil Engineering,2022,39(04):166-173.[doi:10.19815/j.jace.2021.11130]
点击复制

改进BP神经网络的钢结构应力缺失数据重构(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年04期
页码:
166-173
栏目:
出版日期:
2022-07-12

文章信息/Info

Title:
Reconstruction of Missing Stress Data for Steel Structure Based on Improved BP Neural Network
文章编号:
1673-2049(2022)04-0166-08
作者:
游 颖1,王 建1,刘学刚2,彭 宁1,周敏峰2,邓志扬1
(1. 湖北工业大学 机械工程学院,湖北 武汉 430064; 2. 武汉中科科创工程检测有限公司,湖北 武汉 430077)
Author(s):
YOU Ying1, WANG Jian1, LIU Xue-gang2, PENG Ning1, ZHOU Min-feng2, DENG Zhi-yang1
(1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430064, Hubei, China; 2. Wuhan Zhongke Kechuang Engineering Inspection Co., Ltd., Wuhan 430077, Hubei, China)
关键词:
钢结构 数据重构 改进BP神经网络 结构健康监测 粒子群算法 附加动量法
Keywords:
steel structure data reconstruction improved BP neural network structural health monitoring particle swarm algorithm additional momentum method
分类号:
TU391
DOI:
10.19815/j.jace.2021.11130
文献标志码:
A
摘要:
钢结构健康监测过程中的应力数据缺失会干扰监测各环节的运行状态,无法保障施工阶段的安全,因此解决数据缺失问题至关重要。钢结构在施工阶段应力应变监测中,由于受到外界诸多复杂因素的影响,导致监测数据不准确、缺失以及局部应力数据的重构值与真实值偏差较大等问题。采用改进BP神经网络分别对300组和30组钢结构应力应变监测数据进行重构,并对改进BP神经网络的数据重构方法进行适用性分析。结果表明:相比线性回归法,改进BP神经网络法进行离散型缺失数据的重构平均误差降低0.7%,特别是对于局部缺失数据,改进BP神经网络法的重构精度更高,平均局部误差降低2.2%; 为达到较好的重构精度,使用改进BP神经网络对缺失数据重构时,数据的缺失率不宜超过20%; 改进BP神经网络法可为钢结构应力缺失数据重构以及结构健康监测提供技术支持,具有较好的实用性。
Abstract:
The lack of stress data in the process of steel structure health monitoring will interfere with the operation status of each link of monitoring, and cannot guarantee the safety of the construction stage. Therefore, it is very important to solve the problem of data missing. In the stress and strain monitoring of the steel structure during the construction stage, due to the influence of many complex external factors, the monitoring data is inaccurate and missing, and large deviation is between the structural value and the real value. The improved BP neural network was used to reconstruct the monitoring data of the stress and strain of the steel structure of the 300 groups and 30 groups respectively. The applicability of the data reconstruction method of the improved BP neural network was analyzed. The results show that compared with the linear regression method, the improved BP neural network method reduces the average error of discrete missing data reconstruction by 0.7%. Especially for locally missing data, the reconstruction accuracy of the neural network method is higher, and the average local error is reduced by 2.2%. In order to achieve better reconstruction accuracy, when using the improved BP neural network to reconstruct missing data, the missing rate of data should not exceed 20%. The improved BP neural network method can provide technical support for the reconstruction of missing stress data of steel structures and structural health monitoring, which has good practicability.

参考文献/References:

[1] 罗尧治,梅宇佳,沈雁彬,等.国家体育场钢结构温度与应力实测及分析[J].建筑结构学报,2013,34(11):24-32.
LUO Yao-zhi,MEI Yu-jia,SHEN Yan-bin,et al.Field Measurement of Temperature and Stress on Steel Structure of the National Stadium and Analysis of Temperature Action[J].Journal of Building Structures,2013,34(11):24-32.
[2]LUO Y Z,YANG P C,SHEN Y B,et al.Development of a Dynamic Sensing System for Civil Revolving Structures and Its Field Tests in a Large Revolving Auditorium[J].Smart Structures and Systems,2014,13(6):993-1014.
[3]鲜 勇,杨子成,郭玮林,等.基于BP神经网络的惯导初始对准误差辨识方法[J].飞行力学,2021,39(2):77-82,94.
XIAN Yong,YANG Zi-cheng,GUO Wei-lin,et al.Initial Alignment Error Identification Method of SINS Based on BP Neural Network[J].Flight Dynamics,2021,39(2):77-82,94.
[4]罗尧治,刘 钝,沈雁彬,等.杭州铁路东站站房钢结构施工监测[J].空间结构,2013,19(3):3-8,26.
LUO Yao-zhi,LIU Dun,SHEN Yan-bin,et al.Steel Structure Construction Monitoring of Hangzhou Eastrailway Station Building[J].Spatial Structure,2013,19(3):3-8,26.
[5]赵 昕,贾 京,郑毅敏.基于BP神经网络的大跨高空连廊应变监测数据恢复[J].建筑科学与工程学报,2009,26(1):101-106.
ZHAO Xin,JIA Jing,ZHENG Yi-min.Strain Monitoring Data Restoring of Large-span Steel Skybridge Based on BP Neural Network[J].Journal of Architecture and Civil Engineering,2009,26(1):101-106.
[6]杨 渊,练继建,周观根,等.基于深度学习的随机缺失数据重构和结构损伤识别[J].工业建筑,2021,51(增):401-405.
YANG Yuan,LIAN Ji-jian,ZHOU Guan-gen,et al.Random Missing Data Reconstruction and Structural Damage Identification Based on Deep Learning[J].Industrial Construction,2021,51(S):401-405.
[7]孟 欣.建筑能源监测系统中缺失数据的重构与修补方法研究[D].大连:大连理工大学,2021.
MENG Xin.Research on Reconstruction and Repair of Missing Data in Building Energy Monitoring System[D].Dalian:Dalian University of Technology,2021.
[8]金 浏,赵 瑞,杜修力.混凝土抗压强度尺寸效应的神经网络预测模型[J].北京工业大学学报,2021,47(3):260-268.
JIN Liu,ZHAO Rui,DU Xiu-li.Neural Network Prediction Model of Concrete Compressive Strength Size Effect[J].Journal of Beijing University of Technology,2021,47(3):260-268.
[9]MANO RAJA PAUL M,KANNAN R,LEEBAN MOSES M,et al.Fault Identification in a Grid Connected Solar PV System Using Back Propagation Neural Network[J].IOP Conference Series:Materials Science and Engineering,2021,1084(1):012109.
[10]ROSA SUSILA J K,AFIT M,LAKSONO P.Implementation of Back Propagation Artificial Neural Network for Heart Disease Abnormality Diagnosis[J].Journal of Physics:Conference Series,2021,1764(1):012165.
[11]PENG H,WU H,WANG J W.Research on the Prediction of the Water Demand of Construction Engineering Based on the BP Neural Network[J].Advances in Civil Engineering,2020,2020:8868817.
[12]NANGLIA P.Lung Cancer Classification Using Feed Forward Back Propagation Neural Network for CT Images[J].International Journal of Medical Engineering and Informatics,2021,13(2):1.
[13]欧青立,张 磊,邓 鹏,等.粒子群优化BP神经网络PID控制注塑机液压系统[J].应用科技,2018,45(4):50-55.
OU Qing-li,ZHANG Lei,DENG Peng,et al.Particle Swarm Optimization BP Neural Network PID Control Hydraulic System of Injection Molding Machine[J].Applied Science and Technology,2018,45(4):50-55.
[14]黄 璇,郭立红,李 姜,等.改进粒子群优化BP神经网络的目标威胁估计[J].吉林大学学报(工学版),2017,47(3):996-1002.
HUANG Xuan,GUO Li-hong,LI Jiang,et al.Target Threat Assessment Based on BP Neural Network Optimized by Modified Particle Swarm Optimization[J].Journal of Jilin University(Engineering and Technology Edition),2017,47(3):996-1002.
[15]王雪松,许爱德,赵中林,等.粒子群优化递归神经网络的SRM磁链观测器[J].电气工程学报,2017,12(10):1-8.
WANG Xue-song,XU Ai-de,ZHAO Zhong-lin,et al.Stator Flux Observer of SRM Based on Particle Swarm Optimized Recurrent Neural Network[J].Journal of Electrical Engineering,2017,12(10):1-8.
[16]KENNEDY J,EBERHART R.Particle Swarm Optimization[C]//IEEE.Proceedings of ICNN'95 — International Conference on Neural Networks.Perth:IEEE,1995:1942-1948.

相似文献/References:

[1]周奎,郭耀.基于S变换的结构损伤信号处理[J].建筑科学与工程学报,2013,30(04):65.
 ZHOU Kui,GUO Yao.Structural Damage Signal Processing Based on S-transform[J].Journal of Architecture and Civil Engineering,2013,30(04):65.
[2]陈适才,田相凯,张 磊,等.动力转换分析方法的火灾引起钢结构连续倒塌性能研究[J].建筑科学与工程学报,2014,31(02):65.
 [J].Journal of Architecture and Civil Engineering,2014,31(04):65.
[3]刘秀丽,王 燕,李美红,等.钢结构T形连接高强度螺栓受力分析及数值模拟[J].建筑科学与工程学报,2016,33(02):63.
 LIU Xiu-li,WANG Yan,LI Mei-hong,et al.Force Analysis and Numerical Simulation of High Strength Bolts in T-stub Connection of Steel Structure[J].Journal of Architecture and Civil Engineering,2016,33(04):63.
[4]蒋 立,王元清,戴国欣,等.负载下焊接加固钢结构压弯构件受力性能的影响因素分析[J].建筑科学与工程学报,2016,33(05):120.
 JIANG Li,WANG Yuan-qing,DAI Guo-xin,et al.Influence Factor Analysis of Mechanical Behavior of Compression-bending Member of Steel Structure Strengthened by Welding Under Load[J].Journal of Architecture and Civil Engineering,2016,33(04):120.
[5]范 重,李 夏,晁江月,等.航站楼使用阶段钢结构温度取值研究[J].建筑科学与工程学报,2017,34(04):9.
 FAN Zhong,LI Xia,CHAO Jiang-yue,et al.Study on Temperature of Steel Structure in Use Phase of Terminal Building[J].Journal of Architecture and Civil Engineering,2017,34(04):9.
[6]陈长坤,张冬.高温作用下钢交错桁架结构侧移简化模型[J].建筑科学与工程学报,2011,28(01):16.
 CHEN Chang-kun,ZHANG Dong.Simplified Model for Lateral Displacement of Steel Staggered-truss Structure Under High Temperature[J].Journal of Architecture and Civil Engineering,2011,28(04):16.
[7]张虎元,张悦,张学超.钢结构防火涂料着装状态与温湿循环的关系[J].建筑科学与工程学报,2012,29(03):24.
 ZHANG Hu-yuan,ZHANG Yue,ZHANG Xue-chao.Relations of Fire Resistive Coating for Steel Structure and Cycles of Temperature and Humidity[J].Journal of Architecture and Civil Engineering,2012,29(04):24.
[8]陈颖智,童乐为,陈以一.组件法用于钢结构节点性能分析的研究进展[J].建筑科学与工程学报,2012,29(03):81.
 CHEN Ying-zhi,TONG Le-wei,CHEN Yi-yi.Research Developments of Component Method for Behavior of Joints in Steel Structures[J].Journal of Architecture and Civil Engineering,2012,29(04):81.
[9]计琳,赵均海,翟越,等.轴向约束对钢结构柱抗火性能的影响[J].建筑科学与工程学报,2006,23(04):64.
 JI Lin,ZHAO Jun-hai,ZHAI Yue,et al.Effect of Axial Restraint on Fire Resistance Performance of Steel Column[J].Journal of Architecture and Civil Engineering,2006,23(04):64.
[10]黄学伟,赵 军.不同断裂模型在钢结构断裂破坏预测中的比较[J].建筑科学与工程学报,2018,35(01):93.
 HUANG Xue-wei,ZHAO Jun.Comparison of Different Fracture Models for Fracture Failure Prediction of Steel Structures[J].Journal of Architecture and Civil Engineering,2018,35(04):93.

备注/Memo

备注/Memo:
收稿日期:2021-11-16
基金项目:国家自然科学基金项目(52105550); 湖北省自然科学基金项目(2013CFB025)
作者简介:游 颖(1969-),女,湖北赤壁人,副教授,工学博士,E-mail:774085476@qq.com。
更新日期/Last Update: 2022-07-10