|本期目录/Table of Contents|

[1]王连华,冯伟志,王景立.水温循环条件下千枚岩动态力学特性研究[J].建筑科学与工程学报,2023,40(06):157-169.[doi:10.19815/j.jace.2023.10064]
 WANG Lianhua,FENG Weizhi,WANG Jingli.Study on dynamic mechanical properties of phyllite under water-temperature cycle conditions[J].Journal of Architecture and Civil Engineering,2023,40(06):157-169.[doi:10.19815/j.jace.2023.10064]
点击复制

水温循环条件下千枚岩动态力学特性研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
157-169
栏目:
岩土工程
出版日期:
2023-11-30

文章信息/Info

Title:
Study on dynamic mechanical properties of phyllite under water-temperature cycle conditions
文章编号:
1673-2049(2023)06-0157-13
作者:
王连华1,2,冯伟志1,王景立1
(1. 吉林农业大学 工程技术学院,吉林 长春 130118; 2. 中铁二十三局集团有限公司,四川 成都 610031)
Author(s):
WANG Lianhua1,2, FENG Weizhi1, WANG Jingli1
(1. College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China; 2.China Railway 23rd Bureau Group Corporation Limited, Chengdu 610031, Sichuan, China)
关键词:
千枚岩 分离式霍普金森杆试验 温度循环 干湿循环 动态力学特性
Keywords:
phyllite split Hopkinson press bar test temperature cycle dry-wet cycle dynamic mechanical property
分类号:
TU45
DOI:
10.19815/j.jace.2023.10064
文献标志码:
A
摘要:
对0°层理倾角千枚岩分别在温度循环自然降温、温度循环冷水降温、干湿循环3种水温劣化条件下开展1、3、5、8、11次劣化处理,而后采用分离式霍普金森杆(SHPB)试验系统开展水温循环条件下千枚岩动力学特性研究。结果表明:温度循环作用将有效缩短千枚岩应力-应变曲线的屈服阶段,干湿循环条件下千枚岩屈服阶段则较为明显,水温耦合作用后延性增强; 千枚岩动态峰值抗压强度随着水温循环次数的增加不断减小,服从负指数分布规律; 温度循环冷水降温、干湿循环水温耦合作用下千枚岩峰值抗压强度降幅大于温度循环自然降温作用下的抗压强度; 千枚岩耗散能比随着水温循环次数的增加均呈动态增长的规律,因此水温循环对千枚岩耗散能比增幅具有放大效应; 水温循环次数较少时,千枚岩发生贯穿层理面的压致张裂破坏; 随着水温循环次数的增加,千枚岩破坏碎块数逐渐增多,碎块尺寸逐渐减小,分形维数不断增加,破坏模式也逐渐转为张剪破坏的复合破坏模式; 水温耦合作用下,千枚岩更易产生多碎块破裂,碎块平均尺寸总体上更低。
Abstract:
The phyllite with 0° bedding dip angle was subjected to 1, 3, 5, 8, 11 times of deterioration treatment under three water temperature deterioration conditions of temperature cycle natural cooling, temperature cycle cold water cooling and dry-wet cycle, respectively. Then the dynamic characteristics of phyllite under water temperature cycle were studied by using the split Hopkinson press bar(SHPB)test system. The results show that the temperature cycle will effectively shorten the yield stage of the stress-strain curve of phyllite, and the yield stage of phyllite is more obvious under the dry-wet cycle condition, and the ductility is enhanced after the coupling of water temperature. The dynamic peak compressive strength of phyllite decreases with the increase of the number of water temperature cycles, which obeys the negative exponential distribution law. The decrease of peak compressive strength of phyllite under the coupling effect of temperature cycle cold water cooling and dry-wet cycle water temperature is greater than that under the temperature cycle natural cooling. The dissipation energy ratio of phyllite increases dynamically with the increase of water temperature cycle times, so the water temperature cycle has an amplification effect on the increase of dissipation energy ratio of phyllite. When the number of water temperature cycles is small, the pressure-induced tensile fracture failure occurs through the bedding plane. With the increase of the number of water temperature cycles, the number of broken pieces of phyllite increases gradually, the size of broken pieces decreases gradually, the fractal dimension increases continuously, and the failure mode gradually changes into the composite failure mode of tension-shear failure. Under the coupling action of water temperature, phyllite is more prone to multi fragment fracture, the average size of phyllite fragments is generally lower.

参考文献/References:

[1] XU J,FEI D,YU Y,et al.Research on crack evolution law and macroscopic failure mode of joint phyllite under uniaxial compression[J].Scientific Reports,2021,11(1):4196.
[2]吴红波,李占甫,江 山,等.含石量对千枚岩土石混合体剪切特性影响的颗粒流数值模拟[J].公路,2023,68(5):274-282.
WU Hongbo,LI Zhanfu,JIANG Shan,et al.Numerical simulation of influence of rock content on shear characteristics of rock-rock mixture by particle flow[J].Highway,2023,68(5):274-282.
[3]吴永胜,谭忠盛,喻 渝,等.川西北茂县群千枚岩各向异性力学特性[J].岩土力学,2018,39(1):207-215.
WU Yongsheng,TAN Zhongsheng,YU Yu,et al.Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province[J].Rock and Soil Mechanics,2018,39(1):207-215.
[4]王 伟,张 宽,曹亚军,等.层状千枚岩各向异性力学特性与脆性评价研究[J].岩土力学,2023,44(4):975-989.
WANG Wei,ZHANG Kuan,CAO Yajun,et al.Anisotropic mechanical properties and brittleness evaluation of layered phyllite[J].Rock and Soil Mechanics,2023,44(4):975-989.
[5]ZHOU Y,SU S R,LI P.Mechanical behavior,energy release,and crack distribution characteristics of water-saturated phyllite under triaxial cyclic loading[J].Advances in Civil Engineering,2021,2021:1-16.
[6]付宏渊,陈小薇,陈镜丞,等.温、湿度对粉砂质泥岩边坡岩体抗剪强度的影响[J].长安大学学报(自然科学版),2019,39(1):25-33.
FU Hongyuan,CHEN Xiaowei,CHEN Jingcheng,et al.Impact of temperature and humidity on rock mass shear strength of silty-mudstone slope[J].Journal of Chang'an University(Natural Science Edition),2019,39(1):25-33.
[7]MA L H,CHEN J,ZHAO Y F,et al.Water content and bedding angle effects on the mechanical properties and micro-/macro-failure mechanism of phyllite[J].Arabian Journal for Science and Engineering,2022,47(10):13151-13169.
[8]崔 凯,王 珮,谌文武,等.不同干湿作用下斜坡表层千枚岩劣化实验研究[J].工程地质学报,2019,27(2):230-238.
CUI Kai,WANG Pei,CHEN Wenwu,et al.Experimental study on deterioration of phyllite from slope surface under conditions of different dry-wet cycles[J].Journal of Engineering Geology,2019,27(2):230-238.
[9]吴国鹏.白龙江中游地区板岩与千枚岩水-热致劣过程与机理研究[D].兰州:兰州大学,2019.
WU Guopeng.Deterioration process and mechanism of slate and phyllite following water-hot process in the middle reaches of Bailong river[D].Lanzhou:Lanzhou University,2019.
[10]许江波,费东阳,孙浩珲,等.节理千枚岩能量传递与动力学特性[J].东北大学学报(自然科学版),2021,42(7):986-995.
XU Jiangbo,FEI Dongyang,SUN Haohui,et al.Energy transfer and dynamic characteristics of jointed phyllite[J].Journal of Northeastern University(Natural Science),2021,42(7):986-995.
[11]武仁杰,李海波,李晓锋,等.不同冲击载荷下层状千枚岩压缩力学特性研究[J].岩石力学与工程学报,2019,38(增2):3304-3312.
WU Renjie,LI Haibo,LI Xiaofeng,et al.Dynamic mechanical properties of layered phyllite subject to different impact loads[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(S2):3304-3312.
[12]于妍宁,王雪松,潘 博,等.多次冲击荷载对千枚岩性质影响研究[J].矿业研究与开发,2019,39(8):63-67.
YU Yanning,WANG Xuesong,PAN Bo,et al.Study on the Influence of repeated impact loads on the phyllite properties[J].Mining Research and Development,2019,39(8):63-67.
[13]杜志祥,白丁伟,时步炯,等.干湿循环作用下嵊州-新昌地区红层软岩崩解及强度弱化特性研究[J/OL].地质科技通报:1-9[2023-07-18].https://doi.org/10.19509/j.cnki.dzkq.tb20220314.
DU Zhixiang,BAI Dingwei,SHI Bujiong,et al.Research on disintegration and strength weakening characteristics of red-bed soft rock in Shengzhou-Xinchang area under drywetcycle[J/OL].Bulletin of Geological Science and Technology:1-9[2023-07-18].https://doi.org/10.19509/j.cnki.dzkq.tb20220314.
[14]王 伟,龚传根,朱鹏辉,等.大理岩干湿循环力学特性试验研究[J].水利学报,2017,48(10):1175-1184.
WANG Wei,GONG Chuangen,ZHU Penghui,et al.Experimental study on mechanical properties of marble under hydraulic weathering coupling[J].Journal of Hydraulic Engineering,2017,48(10):1175-1184.
[15]CHEN X,HE P,QIN Z.Strength weakening and energy mechanism of rocks subjected to wet-dry cycles[J].Geotechnical and Geological Engineering,2019,37(5):3915-3923.
[16]尹红亮,文良东,吴国庆,等.干湿循环条件下红层泥岩崩解特性及规律研究[J].公路交通科技,2023,40(4):94-102.
YIN Hongliang,WEN Liangdong,WU Guoqing,et al.Study on disintegration characteristics and rule of redbed mudstone under action of dry-wet cycles[J].Journal of Highway and Transportation Research and Development,2023,40(4):94-102.
[17]赖增伟,玉达变,刘先林,等.干湿循环导致粉砂质泥岩力学特性变化规律研究[J].力学季刊,2023,44(2):407-417.
LAI Zengwei,YU Dabian,LIU Xianlin,et al.Study on the variation of mechanical properties of silty mudstone caused by drying-wetting cycle[J].Chinese Quarterly of Mechanics,2023,44(2):407-417.
[18]袁 璞,马冬冬.干湿循环与动载耦合作用下煤矿砂岩损伤演化及本构模型研究[J].长江科学院院报,2019,36(8):119-124.
YUAN Pu,MA Dongdong.Damage evolution and constitutive model of coalmine sandstone under coupling wetting-drying cycles and dynamic loading[J].Journal of Yangze River Scientific Research Institute,2019,36(8):119-124.
[19]朱建波,付乙梓,李 瑞,等.干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J].岩石力学与工程学报,2023,42(增1):3558-3566.
ZHU Jianbo,FU Yizi,LI Rui,et al.Experimental study on mechanical characteristics of sandstone under drying-wetting cycles and dynamic compression[J].Chinese Journal of Rock Mechanics and Engineering,2023,42(S1):3558-3566.
[20]XU J B,SUN H H,CUI Y L.et al.Study on dynamic characteristics of diorite under dry-wet cycle[J].Rock Mechanics and Rock Engineering,2021,54(12):6339-6349.
[21]张 勇.温度循环作用后蚀变岩力学参数劣化规律的探究[J].工程地质学报,2017,25(2):410-415.
ZHANG Yong.Study on deterioration law of altered rock under cyclic temperature[J].Journal of Engineering Geology,2017,25(2):410-415.
[22]HU J J,XIE H P,SUN Q,et al.Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action[J].International Journal of Mining Science and Technology,2021,31(5):843-852.
[23]付 鹏,亓宪寅,王胜伟,等.高温作用后层状复合岩石单轴压缩试验损伤机理研究[J/OL].建筑科学与工程学报:1-13[2023-10-29].http://kns.cnki.net/kcms/detail/61.1442.tu.20221108.0927.002.html.
FU Peng,QI Xianyin,WANG Shengwei,et al.Study on damage law of layered composite rock after high temperature[J/OL].Journal of Architecture and Civil Engineering:1-13[2023-10-29].http://kns.cnki.net/kcms/detail/61.1442.tu.20221108.0927.002.html.
[24]MA W,ZHOU X,LI J,et al.Study on interface shear strength between polyurethane treated and original Pisha sandstone under dry-wet cycles[J/OL].Journal of Traffic and Transportation Engineering(English Edition):1-26[2023-10-29].http://kns.cnki.net/kcms/detail/61.1494.U.20211203.2154.002.html.
[25]平 琦,吴明静,张 欢,等.高温条件下砂岩动态力学特性试验研究[J].地下空间与工程学报,2019,15(3):691-698.
PING Qi,WU Mingjing,ZHANG Huan,et al.Experimental study on dynamic mechanical characteristics of sandstone under actual high temperature conditions[J].Chinese Journal of Underground Space and Engineering,2019,15(3):691-698.
[26]洪 亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].长沙:中南大学,2008.
HONG Liang.Size effect on strength and energy dissipation in fracture of rock under impact loads[D].Changsha:Central South University,2008.
[27]张蓉蓉.水热耦合作用下深部岩石动态力学特性及本构模型研究[D].淮南:安徽理工大学,2019.
ZHANG Rongrong.Study on dynamic mechanical properties and constitutive model of deep rock under hydrothermal coupling[D].Huainan:Anhui University of Science and Technology,2019.
[28]殷志强,李夕兵,金解放,等.围压卸载速度对岩石动力强度与破碎特性的影响[J].岩土工程学报,2011,33(8):1296-1301.
YIN Zhiqiang,LI Xibing,JIN Jiefang,et al.Effects of unloading rates of confining pressure on dynamic strength and fragmentation characteristics of rock under impact loads[J].Chinese Journal of Geotechnical Engineering,2011,33(8):1296-1301.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-02-21
基金项目:国家自然科学基金项目(41807245)
作者简介:王连华(1977-),男,高级工程师,E-mail:731794091@qq.com。
通信作者:王景立(1965-),男,工学博士,教授,博士生导师,E-mail:wjlwy2004@sina.com。
更新日期/Last Update: 2023-12-01