|本期目录/Table of Contents|

[1]肖逸鹏,周朝阳,何 畅,等.斜拉桥非对称V形钢塔-混凝土基座结合部传力机理分析[J].建筑科学与工程学报,2025,42(01):148-156.[doi:10.19815/j.jace.2023.04133]
 XIAO Yipeng,ZHOU Chaoyang,HE Chang,et al.Mechanism analysis of force transfer at joint of asymmetric V-shaped steel pylon and concrete base of cable-stayed bridge[J].Journal of Architecture and Civil Engineering,2025,42(01):148-156.[doi:10.19815/j.jace.2023.04133]
点击复制

斜拉桥非对称V形钢塔-混凝土基座结合部传力机理分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年01期
页码:
148-156
栏目:
桥隧结构
出版日期:
2025-01-20

文章信息/Info

Title:
Mechanism analysis of force transfer at joint of asymmetric V-shaped steel pylon and concrete base of cable-stayed bridge
文章编号:
1673-2049(2025)01-0148-09
作者:
肖逸鹏,周朝阳,何 畅,陈世杰,刘一江
(中南大学 土木工程学院,湖南 长沙 410075)
Author(s):
XIAO Yipeng, ZHOU Chaoyang, HE Chang, CHEN Shijie, LIU Yijiang
(School of Civil Engineering, Central South University, Changsha 410075, Hunan, China)
关键词:
斜拉桥 钢-混结合部 有限元分析 界面应力 传力机理
Keywords:
cable-stayed bridge steel-concrete joint finite element analysis interfacial stress force transfer mechanism
分类号:
U443
DOI:
10.19815/j.jace.2023.04133
文献标志码:
A
摘要:
为缓解塔柱到基座的刚度陡变,提出了在钢塔底部箱形截面内设置U形加劲肋的局部构造优化方式并建立了有限元模型,计算了混凝土承台、基座、钢锚箱及钢塔临底区域的应力,在此基础上,分析了塔底-承压板连接处应力以及箱内焊缝缺陷的影响,研究了承压板与混凝土基座之间的界面应力,探讨了各部件对结合部内力传递的贡献。结果表明:在钢塔底部箱内设置U形加劲肋可有效降低钢塔底部应力峰值,在典型最不利荷载组合下,钢-混结合部各部分应力均未超限; 在最小轴力和最大弯矩工况下,柱底壁板、肋板与承压板之间焊缝沿线以受压为主,且满足焊缝强度要求; 当柱底箱内焊接存在质量缺陷时,附近壁板和承压板应力增加,但肋板与承压板连接处仍能传递部分压力; 两种工况下承压板与混凝土基座之间均无脱开风险; 塔底竖向压力主要依靠承压板直接传给混凝土,而剪力大多通过锚箱传递。
Abstract:
In order to alleviate the stiffness steep change from the pylon column to the base, a local structural optimization method of setting U-shaped stiffeners in the box section at the steel pylon bottom was proposed and the finite element model was established. The stress of the concrete cap, base, steel anchor box and steel pylon bottom area were calculated. On the basis, the stress at the connection between the pylon bottom and bearing plate and the influence of the weld defects in the box were analyzed. The interfacial stress between the bearing plate and the concrete base was studied, and the contribution of each component to the internal force transfer of the joint was discussed. The results show that setting U-shaped stiffeners in the bottom box of the steel pylon can effectively reduce the peak stress. Under the typical most unfavorable load combination, the stresses of each part of the steel-concrete joint do not exceed the limit. Under the condition of minimum axial force and maximum bending moment, the weld between the column bottom panel, the rib plate and the bearing plate is almost under pressure and can meet the weld strength requirements. When there are quality defects in the welding inside the column bottom box, the stress in the nearby panel and bearing plate increases, but part of the pressure can still be transmitted at the connection between the rib plate and the bearing plate. There is no detachment risk between the bearing plate and the concrete base under two load conditions. The vertical pressure at the pylon bottom is mainly transmitted to the concrete directly by the bearing plate, while the shear force is mostly transmitted through the anchor box.

参考文献/References:

[1] 崔 冰,赵灿辉,董 萌,等.南京长江第三大桥主塔钢混结合段设计[J].公路,2009,54(5):100-107.
CUI Bing, ZHAO Canhui, DONG Meng, et al. Design of main pylon steel-concrete joint section in Nanjing No.3 Yangtze River bridge project[J]. Highway, 2009, 54(5): 100-107.
[2]徐瑞丰,李 正,周彦锋,等.南京青奥跨江景观桥主塔钢混结合段设计[J].现代交通技术,2015,12(4):38-41.
XU Ruifeng, LI Zheng, ZHOU Yanfeng, et al. Design of joint section of hybrid tower of Nanjing Youth Olympic landscape river bridge[J]. Modern Transportation Technology, 2015, 12(4): 38-41.
[3]顾民杰.宁波大榭第二大桥主塔设计关键技术[J].中国市政工程,2012(3):18-20,103.
GU Minjie. On key technologies of main column design of Ningbo Daxie bridge Ⅱ[J]. China Municipal Engineering, 2012(3): 18-20, 103.
[4]黄 侨.桥梁钢-混凝土组合结构设计原理[M].2版.北京:人民交通出版社,2017.
HUANG Qiao. Design principle of bridge steel-conc-rete composite structure[M]. 2nd ed. Beijing: China Communications Press, 2017.
[5]YAO Y D, YAN M, SHI Z, et al. Mechanical behavior of an innovative steel-concrete joint for long-span railway hybrid box girder cable-stayed bridges[J]. Engineering Structures, 2021, 239: 112358.
[6]肖 林,叶华文,卫 星,等.斜拉桥桥塔钢-混结合段的力学行为和传力机理研究[J].土木工程学报,2014,47(3):88-96.
XIAO Lin, YE Huawen, WEI Xing, et al. Study on mechanical behavior and load transfer mechanism of steel-concrete composite joint of cable-stayed bridge pylon[J]. China Civil Engineering Journal, 2014, 47(3): 88-96.
[7]刘永健,周绪红,颜东煌,等.单边索斜塔钢-混凝土结合梁斜拉桥塔梁根部应力分析[J].中国公路学报,2003,16(2):65-69.
LIU Yongjian, ZHOU Xuhong, YAN Donghuang, et al. Stress analysis of tower-beam joint of inclined tower cable-stayed bridge with steel-concrete girder[J]. China Journal of Highway and Transport, 2003, 16(2): 65-69.
[8]黄 侨,李俊方,李文贤,等.斜拉桥钢桥塔承压式钢-混结合段有限元分析[J].公路交通科技,2020,37(1):50-57.
HUANG Qiao, LI Junfang, LI Wenxian, et al. FE analysis on confined type steel-concrete joint segment of steel pylon of cable-stayed bridge[J]. Journal of Highway and Transportation Research and Development, 2020, 37(1): 50-57.
[9]张光辉,张启伟,刘玉擎,等.斜拉桥混合塔结合部受力机理模型试验[J].哈尔滨工业大学学报,2017,49(3):106-112.
ZHANG Guanghui, ZHANG Qiwei, LIU Yuqing, et al. Model test of composite joint for tower of cable-stayed bridge[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 106-112.
[10]顾民杰,吴关良,葛竞辉,等.重载交通下特大型单索面帆形混合塔斜拉桥设计技术[J].公路,2013,58(9):301-306.
GU Minjie, WU Guanliang, GE Jinghui, et al. Design of cable-stayed bridge with single cable plane and sail-shaped steel-concrete tower[J]. Highway, 2013, 58(9): 301-306.
[11]张喜刚,吴文明,刘 高.无格室-承压板钢-混凝土结合部力学模型及简化计算方法[J].公路交通科技,2013,30(10):49-53.
ZHANG Xigang, WU Wenming, LIU Gao. Mechanical model and simplified calculation method of steel-concrete connection joint with full-connection bearing-plates[J]. Journal of Highway and Transportation Research and Development, 2013, 30(10): 49-53.
[12]雍海鸽.椭圆形钢塔及墩塔结合段应力分析[D].北京:北京交通大学,2014.
YONG Haige. Stress analysis of elliptic steel tower and pier-tower joint section[D]. Beijing: Beijing Jiaotong University, 2014.
[13]李俊方.大跨径钢斜拉桥及其钢塔承压式钢-混结合段的静力学性能研究[D].南京:东南大学,2019.
LI Junfang. Study on static behavior of long-span steel cable-stayed bridge and its steel tower bearing steel-concrete joint[D]. Nanjing: Southeast University, 2019.
[14]施 洲,顾家昌,周勇聪.铁路混合梁斜拉桥钢混结合段研究综述[J].中国铁道科学,2022,43(2):48-59.
SHI Zhou, GU Jiachang, ZHOU Yongcong. Research review on steel-concrete composite joint of railway hybrid girder cable-stayed bridge[J]. China Railway Science,2022,43(2): 48-59.
[15]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005.
LIU Yuqing. Steel-concrete hybrid bridge[M]. Beijing: China Communications Press, 2005.
[16]李 达.钢-混凝土塔座预应力结合段受力性能研究[D].西安:长安大学,2011.
LI Da. Study on mechanical properties of prestressed joint section of steel-concrete tower base[D]. Xi'an: Chang'an University, 2011.
[17]BILLINGTON D P, NAZMY A. History and aesthetics of cable-stayed bridges[J]. Journal of Structural Engineering, 1991, 117(10): 3103-3134.
[18]肖逸鹏,周朝阳,何 畅,等.斜拉桥V形钢塔-混凝土基座结合构造方式比选[J].铁道科学与工程学报,2024,21(3):1047-1057.
XIAO Yipeng, ZHOU Chaoyang, HE Chang, et al. Comparison of joint schemes between V-shaped steel tower and concrete base for cable-stayed bridge[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1047-1057.
[19]高诣民.中小跨径梁桥装配化形式与组合梁桥承载力研究[D].西安:长安大学,2018.
GAO Yimin. Study on assembled form of small and medium span girder bridge and bearing capacity of composite girder bridge[D]. Xi'an: Chang'an University, 2018.

相似文献/References:

[1]杨晓艳,贡金鑫,张启伟.随机车辆荷载作用下斜拉索索力的概率模型及可靠度分析[J].建筑科学与工程学报,2014,31(02):90.
 [J].Journal of Architecture and Civil Engineering,2014,31(01):90.
[2]王 涛,沈锐利.列车荷载作用下铁路斜拉桥索-梁相关振动研究[J].建筑科学与工程学报,2015,32(06):92.
 WANG Tao,SHEN Rui-li.Research on Characteristics of Cable-beam Vibration of Railway Cable-stayed Bridge Under Train Load[J].Journal of Architecture and Civil Engineering,2015,32(01):92.
[3]王连华,丁秉昊,李立峰.斜拉桥锚拉板足尺模型疲劳试验[J].建筑科学与工程学报,2016,33(05):50.
 WANG Lian-hua,DING Bing-hao,LI Li-feng.Fatigue Test of Full-scale Model of Tensile Anchor Plate in Cable-stayed Bridge[J].Journal of Architecture and Civil Engineering,2016,33(01):50.
[4]周士金,刘荣桂,蔡东升,等.CFRP索和钢索斜拉桥地震响应分析与抗震验算[J].建筑科学与工程学报,2009,26(03):76.
 ZHOU Shi-jin,LIU Rong-gui,CAI Dong-sheng,et al.Seismic Response Analysis and Seismic Resistance Checking of Cable-stayed Bridges with CFRP Cables and Steel Cables[J].Journal of Architecture and Civil Engineering,2009,26(01):76.
[5]高剑,裴岷山.大跨度斜拉桥索梁锚箱空间受力分析[J].建筑科学与工程学报,2006,23(03):66.
 GAO Jian,PEI Min-shan.Analysis of Space Stress in Anchoring Box Between Cable andBeam of Long-Span Cable-Stayed Bridge[J].Journal of Architecture and Civil Engineering,2006,23(01):66.
[6]赵人达,邹建波,吕 梁,等.大跨度叠合梁斜拉桥非线性稳定研究[J].建筑科学与工程学报,2018,35(04):11.
 ZHAO Ren-da,ZOU Jian-bo,LU Liang,et al.Research on Nonlinear Stability of Long-span Composite Girder Cable-stayed Bridge[J].Journal of Architecture and Civil Engineering,2018,35(01):11.
[7]赵人达,许智强,邹建波,等.基于ANSYS的大跨斜拉桥地震响应分析及性能评估[J].建筑科学与工程学报,2018,35(04):19.
 ZHAO Ren-da,XU Zhi-qiang,ZOU Jian-bo,et al.Seismic Response Analysis and Performance Evaluation of Long-span Cable-stayed Bridge Based on ANSYS[J].Journal of Architecture and Civil Engineering,2018,35(01):19.
[8]李立峰,曹方亮,胡思聪,等.行波效应下高墩多塔斜拉桥地震易损性分析[J].建筑科学与工程学报,2019,36(02):77.
 LI Li-feng,CAO Fang-liang,HU Si-cong,et al.Seismic Fragility Analysis of High-pier Multi-tower Cable-stayed Bridge Under Traveling Wave Effect[J].Journal of Architecture and Civil Engineering,2019,36(01):77.
[9]韩 石,刘永健,王振华,等.高寒地区组合梁斜拉桥施工阶段温度效应研究[J].建筑科学与工程学报,2021,38(05):107.[doi:10.19815/j.jace.2021.04004]
 HAN Shi,LIU Yong-jian,WANG Zhen-hua,et al.Study on Temperature Effect of Composite Girder Cable-stayed Bridge During Construction in Alpine Region[J].Journal of Architecture and Civil Engineering,2021,38(01):107.[doi:10.19815/j.jace.2021.04004]

备注/Memo

备注/Memo:
收稿日期:2023-04-15
基金项目:长沙市政府采购研究项目(CSCG-202107060066)
作者简介:肖逸鹏(1995-),男,工学博士研究生,E-mail:1062911131@qq.com。
通信作者:何 畅(1992-),男,工学博士,副教授,E-mail:hechang@csu.edu.cn。Author resumes: XIAO Yipeng(1995-), male, doctoral student, E-mail: 1062911131@qq.com; HE Chang(1992-), male, PhD, associate professor, E-mail: hechang@csu.edu.cn.
更新日期/Last Update: 2025-01-20