|本期目录/Table of Contents|

[1]宋许根,甄 洁,朱孟君,等.不同坑底加固方式对管廊基坑变形影响研究[J].建筑科学与工程学报,2025,42(01):179-190.[doi:10.19815/j.jace.2022.09033]
 SONG Xugen,ZHEN Jie,ZHU Mengjun,et al.Research on influence of different bottom reinforcement forms on deformation of pipe gallery excavation[J].Journal of Architecture and Civil Engineering,2025,42(01):179-190.[doi:10.19815/j.jace.2022.09033]
点击复制

不同坑底加固方式对管廊基坑变形影响研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年01期
页码:
179-190
栏目:
岩土工程
出版日期:
2025-01-20

文章信息/Info

Title:
Research on influence of different bottom reinforcement forms on deformation of pipe gallery excavation
文章编号:
1673-2049(2025)01-0179-12
作者:
宋许根1,2,甄 洁2,朱孟君1,王志勇1,衣 凡2,雷华阳2,郑 刚2,程雪松2
(1. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063; 2. 天津大学 土木工程系,天津 300072)
Author(s):
SONG Xugen1,2, ZHEN Jie2, ZHU Mengjun1, WANG Zhiyong1, YI Fan2, LEI Huayang2, ZHENG Gang2, CHENG Xuesong2
(1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 2. Department of Civil Engineering, Tianjin University, Tianjin 300072, China)
关键词:
软土区 管廊基坑 有限元模拟 坑底加固形式 基坑变形
Keywords:
soft soil area pipe gallery excavation finite element simulation bottom reinforcement form excavation deformation
分类号:
TU433
DOI:
10.19815/j.jace.2022.09033
文献标志码:
A
摘要:
基于PLAXIS 3D有限元软件,针对广州南沙某管廊基坑工程,系统分析了抽条加固、格栅状加固、裙边加固与满堂加固的面积置换率、加固宽度d、加固深度h等加固参数对基坑变形(围护结构侧移地表沉降和坑底隆起)的影响,得到了加固参数的限值结果表明:不同加固形式和加固参数对基坑变形的控制效果不同; 4种加固方式均存在加固深度限值,抽条加固的加固深度限值为0.8H(H为基坑开挖深度),格栅状加固与满堂加固控制围护结构变形与地表沉降的加固深度限值为0.6H,控制坑底隆起的加固深度限值为0.8H,裙边加固深度大于0.6H,控制效果显著; 抽条加固裙边加固不存在加固宽度限值,抽条加固宽度对基坑变形无影响,裙边加固增大加固宽度,对围护结构侧移与地表沉降的控制效果呈线性增加,加固宽度大于0.39B(B为基坑宽度)后对坑底隆起的控制效果显著,但裙边加固会使坑底中央隆起凸出,且加固宽度一般不超过0.3B,因此不建议在软土基坑工程中使用裙边加固; 抽条加固、格栅状加固存在加固面积置换率限值,抽条加固控制基坑各项变形的面积置换率限值为66.67%,格栅状加固纵向面积置换率为64.29%时,中轴线存在加固区,隆起曲线呈“M”形,加固效果较好; 加固面积相同时,加固效果从大到小依次为抽条加固、格栅状加固、裙边加固,加固体积相同时,加固效果从大到小依次为满堂加固、抽条加固、格栅状加固。
Abstract:
Based on PLAXIS 3D finite element software, aiming at a pipe gallery excavation project in Nansha, Guangzhou, the influence of reinforcement parameters such as area replacement rate, reinforcement width d and reinforcement depth h of strip reinforcement, grid reinforcement, skirt reinforcement and full house reinforcement on the deformation of foundation pit(lateral displacement of retaining structure, surface settlement and basal heave)was systematically analyzed, and the limit values of reinforcement parameters were obtained. The results show that different reinforcement forms and reinforcement parameters have different control effects on excavation deformation. There are reinforcement depth limits in the four reinforcement forms. The reinforcement depth limit of strip reinforcement is 0.8H(H is excavation depth). The reinforcement depth limit of grid reinforcement and full house reinforcement to control the deformation of retaining structure and surface settlement is 0.6H, the reinforcement depth limit to control the basal heave of excavation is 0.8H, and the control effect is remarkable when the reinforcement depth of skirt reinforcement is greater than 0.6H. There is no reinforcement width limit for strip reinforcement and skirt reinforcement. The width of the strip reinforcement has no effect on the deformation of the excavation. Increasing the width of the skirt reinforcement, the control effect of the lateral displacement of the retaining structure and the surface settlement increases linearly. When the reinforcement width is greater than 0.39B(B is excavation width), the control effect of the basal heave is significant. However, the skirt reinforcement will make the central heave of the bottom bulge, and the reinforcement width generally does not exceed 0.3B.Therefore, it is not recommended to use the skirt reinforcement in the soft soil excavation project. There is a limit value of reinforcement area replacement rate for strip reinforcement and grid reinforcement. The area replacement rate limit of strip reinforcement to control the various deformation is 66.67%. When the longitudinal area replacement rate of grid reinforcement is 64.29%, there is a reinforcement area in the central axis, and the shape of the basal heave curve is “M” type, and the reinforcement effect is better. When the reinforcement area is the same, the reinforcement effect from large to small is strip reinforcement, grid reinforcement and skirt reinforcement. When the reinforcement volume is the same, the reinforcement effect from large to small is full reinforcement, strip reinforcement and grid reinforcement.

参考文献/References:

[1] 郑 刚,俞丹瑶,程雪松,等.考虑土体强度不均匀性时宽窄基坑坑底隆起稳定研究[J].岩土工程学报,2019,41(增1):1-4.
ZHENG Gang, YU Danyao, CHENG Xuesong, et al. Basal heave stability of wide and narrow excavations considering non-homogeneous features of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 1-4.
[2]贾 坚.土体加固技术在基坑开挖工程中的应用[J].地下空间与工程学报,2007,3(1):132-137.
JIA Jian. The application of ground treatment in foundation excavations[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(1): 132-137.
[3]俞建霖,龚晓南.基坑工程变形性状研究[J].土木工程学报,2002,35(4):86-90.
YU Jianlin, GONG Xiaonan. Research on deformation of foundation-pit engineering[J]. China Civil Engineering Journal, 2002, 35(4): 86-90.
[4]陈兴年,刘国彬,王忠远.关于软土基坑加固的一点看法[J].地下空间,2003(1):79-82,86-109.
CHEN Xingnian, LIU Guobin, WANG Zhongyuan. Some viewpoints on consolidation of soft soil foundation[J]. Underground Space, 2003(1): 79-82, 86-109.
[5]秦爱芳,胡中雄,彭世娟.上海软土地区受卸荷影响的基坑工程被动区土体加固深度研究[J].岩土工程学报,2008,30(6):935-940.
QIN Aifang, HU Zhongxiong, PENG Shijuan. Depth of soil stabilization in passive area of foundation pits for Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 935-940.
[6]魏 祥,杜金龙,杨 敏.被动区加固对基坑外桩基础的变形影响分析[J].岩土工程学报,2008,30(增1):37-40.
WEI Xiang, DU Jinlong, YANG Min. Analysis of influence of passive zone reinforcement on deformation of pile foundation outside foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 37-40.
[7]侯新宇,刘松玉,童立元.被动区深搅桩加固对地铁深基坑变形的影响[J].东南大学学报(自然科学版),2010,40(1):180-184.
HOU Xinyu, LIU Songyu, TONG Liyuan. Effect of deep mixing pile reinforce on deformation of deep foundation pit in metro station in passive zone[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(1): 180-184.
[8]郑俊杰,章荣军,丁烈云,等.基坑被动区加固的位移控制效果及参数分析[J].岩石力学与工程学报,2010,29(5):1042-1051.
ZHENG Junjie, ZHANG Rongjun, DING Lieyun, et al. Displacement control effects and parameter analysis of passive zone improvement of foundation pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1042-1051.
[9]刘 溢,李镜培,陈 伟.被动区深层搅拌桩加固对超大深基坑变形的影响[J].岩土工程学报,2012,34(增1):465-469.
LIU Yi, LI Jingpei, CHEN Wei.Influence of deep mixing pile reinforcement in passive area on deformation of super-large deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 465-469.
[10]刘雪珠,张艳书,顾蒙娜,等.坑底加固置换率对杭州地铁湘湖站深基坑安全的影响分析[J].岩土工程学报,2016,38(增2):136-142.
LIU Xuezhu, ZHANG Yanshu, GU Mengna, et al. Analysis of the influence of pit bottom reinforcement replacement rate on the safety of deep foundation pit in Xianghu station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 136-142.
[11]李卓峰,林伟岸,朱瑶宏,等.坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J].浙江大学学报(工学版),2017,51(8):1475-1481,1508.
LI Zhuofeng, LIN Weian, ZHU Yaohong, et al. Field test and analysis of controlling metro excavations deformation by foundation reinforcement[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(8): 1475-1481, 1508.
[12]秦会来,黄 俊,李奇志,等.深厚淤泥地层深基坑变形影响因素分析[J].岩土工程学报,2021,43(增2):23-26.
QIN Huilai, HUANG Jun, LI Qizhi, et al. Analysis of influencing factors on deformation of deep foundation pit in deep silt stratum[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 23-26.
[13]王 龙,朱长根,徐柯锋,等.上覆新填土软土深基坑开挖变形控制数值模拟[J].岩土工程学报,2021,43(增2):84-87.
WANG Long, ZHU Changgen, XU Kefeng, et al. Numerical simulation of deformation control during excavation of deep foundation pit in soft soil with newly filled soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 84-87.
[14]FAHEEM H, CAI F, UGAI K. Three-dimensional base stability of rectangular excavations in soft soils using FEM[J]. Computers and Geotechnics, 2004, 31(2): 67-74.
[15]GOH A T C, ZHANG F, ZHANG W G, et al. A simple estimation model for 3D braced excavation wall deflection[J]. Computers and Geotechnics, 2017, 83: 106-113.
[16]广东省海堤工程设计导则:DB 44/T182—2004[S].北京:中国水利水电出版社,2004.
Design guide for coastal levee project of Guangdong province: DB 44/T182—2004[S]. Beijing: China Water & Power Press, 2004.
[17]龚晓南.地基处理手册[M].3版.北京:中国建筑工业出版社,2008.
GONG Xiaonan. Handbook of foundation treatment[M]. 3rd ed. Beijing: China Architecture & Building Press, 2008.
[18]复合地基技术规范:GB/T 50783—2012[S].北京:中国计划出版社,2012.
Technical code for composite foundation: GB/T 50783—2012[S]. Beijing: China Planning Press, 2012.
[19]建筑地基处理技术规范:JGJ 79—2012[S].北京:中国建筑工业出版社,2013.
Technical code for ground treatment of buildings: JGJ 79—2012[S]. Beijing: China Architecture & Building Press, 2013.
[20]袁文俊,蔡梓淇,谢 松,等.基于强度试验的水泥土搅拌桩施工综合参数研究[J].湖南大学学报(自然科学版),2018,45(增1):46-51.
YUAN Wenjun, CAI Ziqi, XIE Song, et al. Study on construction technology coordination parameters of cement soil mixed piles based on strength tests[J]. Journal of Hunan University(Natural Sciences), 2018, 45(S1): 46-51.
[21]孙 辉.坑底加固对深基坑地连墙支护稳定性影响研究[D].南京:东南大学,2018.
SUN Hui. Study on the influence of bottom reinforcement on deformation and stability of deep foundation pit supported by diaphragm wall[D]. Nanjing: Southeast University, 2018.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-09-05
基金项目:国家自然科学基金项目(52178343); 中铁第四勘察设计院集团有限公司重点科研课题(2020k118); 住房和城乡建设部支撑产业转型升级重点研发项目(2020k155)
作者简介:宋许根(1992-),男,工程师,E-mail:songxugen@qq.com。
通信作者:程雪松(1985-),男,工学博士,教授,博士生导师,E-mail:cheng_xuesong@163.com。Author resumes: SONG Xugen(1992-), male, engineer, E-mail: songxugen@qq.com; CHENG Xuesong(1985-), male, PhD, professor, E-mail: cheng_xuesong@163.com.
更新日期/Last Update: 2025-01-20