|本期目录/Table of Contents|

[1]杨坤,胡阳阳,孙珊珊,等.多螺旋复合箍筋约束混凝土方柱轴压承载力计算[J].建筑科学与工程学报,2025,42(02):58-66.[doi:10.19815/j.jace.2023.03027]
 YANG Kun,HU Yangyang,SUN Shanshan,et al.Calculation of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups[J].Journal of Architecture and Civil Engineering,2025,42(02):58-66.[doi:10.19815/j.jace.2023.03027]
点击复制

多螺旋复合箍筋约束混凝土方柱轴压承载力计算(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
58-66
栏目:
建筑结构
出版日期:
2025-03-20

文章信息/Info

Title:
Calculation of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups
文章编号:
1673-2049(2025)02-0058-09
作者:
杨坤1,胡阳阳2,孙珊珊1,高晓敏3,吉康乐1
(1. 长安大学 建筑工程学院,陕西 西安 710061; 2. 西安建筑科大工程技术有限公司,陕西 西安 710055; 3. 中建六局土木工程有限公司,天津 300457)
Author(s):
YANG Kun1, HU Yangyang2, SUN Shanshan1, GAO Xiaomin3, JI Kangle1
(1. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China; 2. XAUAT Engineering Technology Co., Ltd., Xi'an 710055, Shaanxi, China; 3. China Construction Sixth Engineering Bureau Civil Engineering Co., Ltd., Tianjin 300457, China)
关键词:
多螺旋复合箍筋 双剪统一强度理论 轴压承载力 试验研究 理论计算方法
Keywords:
multi-spiral composite stirrup twin shear unified strength theory axial compression bearing capacity experimental investigation theoretical calculation method
分类号:
TU375.3
DOI:
10.19815/j.jace.2023.03027
文献标志码:
A
摘要:
为研究多螺旋复合箍筋约束混凝土方柱的轴心受压承载力,对7根该类型短柱进行了轴心受压试验,分析了箍筋间距、箍筋形式、箍筋强度对其轴压性能的影响。考虑到矩形外箍、圆螺旋内箍以及外围圆螺旋箍内的混凝土圆柱体对核心混凝土的多重约束作用,对多螺旋复合箍筋的约束机理进行了分析。基于双剪统一强度理论,推导出多螺旋复合箍筋约束混凝土方柱的轴心受压承载力计算公式,并与试验结果、已有规范及学者提出的计算公式进行对比。结果表明:随着箍筋间距的减小或者箍筋强度的提高,多螺旋箍筋约束混凝土试件的强度和延性均提高; 多螺旋复合箍筋的约束效果好于传统井字形复合箍筋,且五螺旋复合箍筋的约束效果好于四螺旋复合箍筋; 提出的轴压承载力计算公式精度较高,验证了统一强度理论在多螺旋复合箍筋约束混凝土方柱轴压承载力计算中的适用性; 相比矩形外箍,圆螺旋内箍的间距与强度对约束混凝土方柱轴压承载力提高幅度的影响更为明显。
Abstract:
In order to study the axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups, an axial compression experimental study including 7 short columns of this type was carried out. The effects of stirrup spacing, stirrup form and stirrup strength on the axial compression bearing capacity of the columns were discussed. Considering the multiple confinement effect of rectangular outer hoop, circular spiral inner hoop and the concrete cylinder surrounded by outer spiral stirrups on core concrete, the confinement mechanism of multi-spiral composite stirrup was analyzed. Based on the twin shear unified strength theory, the calculation formula of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups was derived and compared with the test results, existing national regulation and the calculation formulas proposed by scholars. The results show that the strength and ductility of multi-spiral stirrup confined concrete specimens increase with the decrease of stirrup spacing or the increase of stirrup strength. The constraint effect of multi-spiral composite stirrups is better than that of traditional cross-shaped composite stirrups, and the constraint effect of five-spiral composite stirrups is better than that of four-spiral composite stirrups. The proposed formula for calculating axial compressive capacity is of high accuracy, which verifies the applicability of the unified strength theory in the calculation of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups. Compared with the rectangular outer hoop, the spacing and strength of the circular spiral inner hoop have a more obvious effect on the increase of axial compression bearing capacity of the confined concrete square column.

参考文献/References:

[1] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridge columns under seismic loading[J]. ACI Structural Journal, 1987, 84(1): 61-76.
[2]TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns[D]. Canterbury: University of Canterbury, 1990.
[3]TANAKA H, PARK R. Seismic design and behavior of reinforced concrete columns with interlocking spirals[J]. ACI Structural Journal, 1993, 90(2): 192-203.
[4]KIM J K, PARK C K. The behaviour of concrete columns with interlocking spirals[J]. Engineering Structures, 1999, 21(10): 945-953.
[5]CORREAL J F, SAIIDI M, SANDERS D H. Seismic performance of RC bridge columns reinforced with two interlocking spirals[M]. Reno: University of Nevada, 2004.
[6]CORREAL J F, SAIIDI M S, SANDERS D, et al. Analytical evaluation of bridge columns with double interlocking spirals[J]. ACI Structural Journal, 2007, 104(3): 314-323.
[7]CORREAL J F, SAIIDI M S, SANDERS D,et al.Shake table studies of bridge columns with double interlocking spirals[J]. ACI Structural Journal, 2007, 104(4): 393-401.
[8]OU Y C, NGO S H, YIN S Y, et al. Shear behavior of oblong bridge columns with innovative seven-spiral transverse reinforcement[J]. ACI Structural Journal, 2014, 111(6): 1339-1350.
[9]尹衍樑.矩形混凝土柱新的约束型式之研发(Ⅱ)外方内圆、组合螺箍及其衍生型式[J].土木工程学报,2004,37(10):1-12.
YIN Yanliang. Researches and developments of alternative confinements for rectangular concrete columns(Ⅱ)[J]. China Civil Engineering Journal, 2004, 37(10): 1-12.
[10]尹衍樑,翁正强,王瑞祯,等.预铸复合螺箍SRC柱之轴压行为研究[J].中国工程科学,2006,8(12):16-30.
YIN Yanliang, WENG Zhengqiang, WANG Ruizhen, et al. Axial compressive behavior of precast SRC columns with multi-spirals[J]. Engineering Science, 2006, 8(12): 16-30.
[11]翁正强,尹衍樑,王瑞祯,等.五螺旋矩形RC柱之轴压试验与优化设计研究[J].结构工程,2010,25(1):71-105.
WENG Zhengqiang, YIN Yanliang, WANG Ruizhen, et al. Research on axial compression test and optimization design of five-screw hoop rectangular RC columns[J]. Structural engineering, 2010, 25(1): 71-105.
[12]YIN Y L, WU T L, LIU T C, et al. Interlocking spiral confinement for rectangular columns[J]. Concrete international, 2011, 33(12): 38-45.
[13]YIN S, WANG J C, WANG P H. Development of multi-spiral confinements in rectangular columns for construction automation[J]. Journal of the Chinese Institute of Engineers, 2012, 35(3): 309-320.
[14]WENG C, YIN Y, WANG J, et al. Seismic cyclic loading test of SRC columns confined with 5-spirals[J]. Science in China Series E: Technological Sciences, 2008,51(5): 529-555.
[15]翁正强,尹衍梁,王瑞祯,等.预铸五螺箍矩形SRC柱之轴压与反复载重抗震试验[J].建筑钢结构进展,2007,9(6):12-19.
WENG Zhengqiang, YIN Yanliang, WANG Ruizhen, et al. Axial compression and seismic behavior of precast rectangular SRC columns confined with 5-spirals[J]. Progress in Steel Building Structures, 2007, 9(6): 12-19.
[16]LIANG C Y, CHEN C C, WENG C C, et al. Axial compressive behavior of square composite columns confined by multiple spirals[J]. Journal of Constructional Steel Research, 2014, 103: 230-240.
[17]唐 琼,李 易,陆新征,等.多螺箍筋柱轴压承载力研究[J].工程力学,2018,35(增1):166-171.
TANG Qiong, LI Yi, LU Xinzheng, et al. Study on axial compression capacity of multi-spiral hoops confined concrete columns[J]. Engineering Mechanics, 2018, 35(S1): 166-171.
[18]刘成清,邓佑毅,方登甲,等.新型五螺箍矩形短柱轴压承载力计算分析[J].西南交通大学学报,2022,57(6):1157-1164,1174.
LIU Chengqing, DENG Youyi, FANG Dengjia, et al. Calculation method of axial compression capacity for rectangular short reinforced concrete columns confined with innovative five-spiral stirrups[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1157-1164, 1174.
[19]JING D H, YU T, LIU X D. New configuration of transverse reinforcement for improved seismic resistance of rectangular RC columns: concept and axial compressive behavior[J]. Engineering Structures, 2016, 111: 383-393.
[20]LI Y Z, CAO S Y, JING D H. Analytical compressive stress-strain model for concrete confined with high-strength multiple-tied-spiral transverse reinforcement[J]. The Structural Design of Tall and Special Buildings, 2018, 27(2): e1416.
[21]JING D H, HUANG L B. Effect of transverse reinforcement on rectangular concrete columns with MTSTR[J]. Magazine of Concrete Research, 2019, 71(2): 71-84.
[22]杨 坤,郭书慧,王亚昆,等.新型多螺旋复合箍筋约束混凝土方柱的轴压性能试验研究[J].建筑科学与工程学报,2023,40(4):80-86.
YANG Kun, GUO Shuhui, WANG Yakun, et al. Experimental study on axial compression performance of square concrete column confined with new multi-spiral composite stirrups[J]. Journal of Architecture and Civil Engineering, 2023, 40(4): 80-86.
[23]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
YU Maohong. Double shear theory and its application[M]. Beijing: Science Press, 1998.
[24]史庆轩,戎 翀,任 浩,等.基于统一强度理论的钢管混凝土柱承载力计算[J].力学季刊,2015,36(4):690-696.
SHI Qingxuan, RONG Chong, REN Hao, et al. Calculation of the compressive strength of concrete filled steel tube(CFST)based on the twin shear unified strength theory[J]. Chinese Quarterly of Mechanics, 2015, 36(4): 690-696.
[25]史庆轩,戎 翀,张 婷,等.约束混凝土实用本构关系模型[J].建筑材料学报,2017,20(1):49-54.
SHI Qingxuan, RONG Chong, ZHANG Ting, et al. A practical stress-strain model for confined concrete[J]. Journal of Building Materials, 2017, 20(1): 49-54.
[26]LI Y Z, CAO S Y, JING D H. Axial compressive behaviour of RC columns with high-strength MTS transverse reinforcement[J]. Magazine of Concrete Research, 2017, 69(9): 436-452.
[27]SAKINO K, NAKAHARA H, MORINO S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering, 2004, 130(2): 180-188.
[28]张常光,赵均海,魏雪英,等.外方内圆中空夹层钢管混凝土轴压短柱的极限承载力[J].建筑科学与工程学报,2008,25(4):78-82.
ZHANG Changguang, ZHAO Junhai, WEI Xueying, et al. Ultimate bearing capacity of CHS inner and SHS outer concrete-filled double skin tubes stub columns[J]. Journal of Architecture and Civil Engineering, 2008, 25(4): 78-82.
[29]赵均海,徐坚锋,李 艳.带肋薄壁方钢管混凝土轴压短柱的极限承载力[J].混凝土,2013(9):5-9.
ZHAO Junhai, XU Jianfeng, LI Yan. The ultimate bearing capacity for the concrete-filled square stiffened thin-walled steel tubular short columns under axial compression[J]. Concrete, 2013(9): 5-9.
[30]混凝土结构设计规范:GB 50010—2010[M].北京:中国建筑工业出版社,2016.
Code for design of concrete structures: GB 50010—2010[M]. Beijing: China Architecture & Building Press, 2016.
[31]蔡绍怀,焦占拴.复式钢管混凝土柱的基本性能和承载力计算[J].建筑结构学报,1997,18(6):20-25.
CAI Shaohuai, JIAO Zhanshuan. Behavior and ultimate load analysis of multibarrel tube-confined concrete columns[J]. Journal of Building Structures, 1997, 18(6): 20-25.

相似文献/References:

[1]王娟,赵均海,吴赛,等.基于统一强度理论的矩形钢管混凝土短柱轴压承载力计算[J].建筑科学与工程学报,2011,28(03):88.
 WANG Juan,ZHAO Jun-hai,WU Sai,et al.Calculation of Axial Bearing Capacity of Rectangular Concrete-filled Steel Tube Short Column Based on Twin Shear Unified Strength Theory[J].Journal of Architecture and Civil Engineering,2011,28(02):88.
[2]李艳,赵均海,梁文彪,等.考虑初应力的哑铃型钢管混凝土短柱轴压承载力分析[J].建筑科学与工程学报,2012,29(03):90.
 LI Yan,ZHAO Jun-hai,LIANG Wen-biao,et al.Analysis of Axial Bearing Capacity for Dumbbell Shaped Concrete-filled Steel Tubular Stub Columns with Initial Stress[J].Journal of Architecture and Civil Engineering,2012,29(02):90.
[3]黄亚娟,赵均海,田文秀.基于双剪统一强度理论的刚性结构物竖直土压力计算[J].建筑科学与工程学报,2008,25(01):107.
 HUANG Ya-juan,ZHAO Jun-hai,TIAN Wen-xiu.Calculation of Vertical Earth Pressure of Rigidity Structures Based on Two Shear Unified Strength Theory[J].Journal of Architecture and Civil Engineering,2008,25(02):107.
[4]贾萍,赵均海,魏雪英,等.空间主动土压力双剪统一解的简化计算[J].建筑科学与工程学报,2008,25(02):85.
 JIA Ping,ZHAO Jun-hai,WEI Xue-ying,et al.Simplified Calculation of Twin-shear Unified Solution of Space Active Earth Pressure[J].Journal of Architecture and Civil Engineering,2008,25(02):85.
[5]魏锦,赵均海,刘彦东,等.钢管混凝土轴压短柱的极限承载力分析[J].建筑科学与工程学报,2008,25(03):81.
 WEI Jin,ZHAO Jun-hai,LIU Yan-dong,et al.Analysis of Ultimate Bearing Capacity of Concrete-filled Steel Tubular Axial Compression Short Columns[J].Journal of Architecture and Civil Engineering,2008,25(02):81.
[6]田宏伟,赵均海,魏锦.圆钢管混凝土轴压长柱的极限承载力[J].建筑科学与工程学报,2007,24(02):74.
 TIAN Hong-wei,ZHAO Jun-hai,WEI Jin.Ultimate Bearing Capacity of Concrete-filled Circular Steel Tubular Long Columns with Axial Compression[J].Journal of Architecture and Civil Engineering,2007,24(02):74.

备注/Memo

备注/Memo:
收稿日期:2023-03-07
基金项目:国家自然科学基金项目(51708035); 陕西省自然科学基础研究计划项目(2021JM-177)
作者简介:杨 坤(1982-),女,工学博士,副教授,E-mail:yangkun8224@126.com。
通信作者:孙珊珊(1986-),女,工学博士,高级工程师,E-mail:sunjin1986123@163.com。
Author resumes: YANG Kun(1982-), female, PhD, associate professor, E-mail: yangkun8224@126.com; SUN Shanshan(1986-), female, PhD, senior engineer, E-mail: sunjin1986123@163.com.
更新日期/Last Update: 2025-03-20