|本期目录/Table of Contents|

[1]王淑红,刘向宏,孙清,等.圆锥形中空夹层钢管混凝土构件压弯性能及承载力计算方法研究[J].建筑科学与工程学报,2025,42(02):67-81.[doi:10.19815/j.jace.2023.04004]
 WANG Shuhong,LIU Xianghong,SUN Qing,et al.Study on bending behavior and bearing capacity calculation method of tapered concrete-filled double skin steel tubular members[J].Journal of Architecture and Civil Engineering,2025,42(02):67-81.[doi:10.19815/j.jace.2023.04004]
点击复制

圆锥形中空夹层钢管混凝土构件压弯性能及承载力计算方法研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
67-81
栏目:
建筑结构
出版日期:
2025-03-20

文章信息/Info

Title:
Study on bending behavior and bearing capacity calculation method of tapered concrete-filled double skin steel tubular members
文章编号:
1673-2049(2025)02-0067-15
作者:
王淑红1,刘向宏2,孙清2,王建涛3,张琳琳1,陈赛慧1
(1. 国网浙江省电力有限公司经济技术研究院,浙江 杭州 310008; 2. 西安交通大学 人居环境与建筑工程学院,陕西 西安 710049; 3. 西安建筑科技大学 土木工程学院,陕西 西安 710055)
Author(s):
WANG Shuhong1, LIU Xianghong2, SUN Qing2, WANG Jiantao3, ZHANG Linlin1, CHEN Saihui1
(1. Economic and Technical Research Institute, State Grid Zhejiang Electric Power Co., Ltd, Hangzhou 310008, Zhejiang, China; 2. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; 3. College of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, Shaanxi, China)
关键词:
圆锥形中空夹层钢管混凝土构件 数值模拟 弯矩分配机制 截面应力积分理论
Keywords:
tapered concrete-filled double skin steel tubular member numerical modelling moment distribution mechanism theory of section stress integral
分类号:
TU391
DOI:
10.19815/j.jace.2023.04004
文献标志码:
A
摘要:
面向海上风电支撑结构大型化发展需求,研究了大空心率、大筒身锥度和超限径厚比下圆锥形中空夹层钢管混凝土(CFDST)构件的压弯受力全过程机理,将构件弯矩-位移曲线划分为弹性、开裂、弹塑性和破坏4个受力阶段; 阐明了关键因素对圆锥形CFDST构件承载力和刚度的影响规律。基于截面应力积分理论提出了圆锥形CFDST构件压弯相关性曲线计算方法,分析了不同约束混凝土本构模型计算轴力-弯矩曲线的差异性,对比了规范建议压弯承载力公式和极限状态法计算结果,验证了截面应力积分理论计算方法的准确性。结果表明:筒身锥度、内外钢管径厚比与承载力和刚度呈负相关; 截面空心率、轴压比小于界限值时与承载力和刚度呈正相关,反之呈负相关; 内外钢管屈服强度和混凝土强度与承载力和刚度呈正相关; 采用截面应力积分理论、规范压弯承载力计算公式和极限状态法均可良好描述轴力-弯矩曲线的变化规律,且具有计算效率高、准确性好的优势; 研究成果可对大空心率、大锥度及超限径厚比的圆锥形中空夹层钢管混凝土构件在风电工程中的应用提供有益参考。
Abstract:
Against the large-scale development requirement on support structure of offshore wind turbine, the full-range compression-bending mechanism of tapered concrete-filled double skin steel tubular(CFDST)members was examined under the large hollow ratios and taper degree as well as the out-of-code diameter-to-thickness ratios, where the moment-displacement curves could be divided into four stages, namely the elastic stage, cracking stage, elastic-plastic stage and failure stage. Influence of key parameters on ultimate bearing capacity and stiffness of tapered CFDST was revealed. Based on the section stress integral theory, the calculation method of the compression-bending correlation curve of tapered CFDST members was proposed. The difference of axial force-moment correlation curves calculated by different confined concrete constitutive models was analyzed. The calculation results of the proposed compression-bending bearing capacity formula and the limit state method were compared. The accuracy of the section stress integral theory calculation method was verified. The results show that the taper degree and diameter-to-thickness ratios of double-skin tubes are negatively correlated with the bearing capacity and stiffness. The cross-sectional hollow ratios and axial compression ratios within the limited value are positively correlated with the bearing capacity and stiffness, and inversely, they are negatively correlated. The yield strengths of double-skin tubes and compressive strength of sandwich concrete are positively correlated. The variation of axial force-moment correlation curves can be well described by using the theory of section stress integral, the calculation formula of bending bearing capacity and the limit state method, and it has the advantages of high calculation efficiency and good accuracy. The research results can provide useful reference for the application of tapered CFDST members with large hollow ratios, large taper degree and out-of-code radius-thickness ratio in wind power projects.

参考文献/References:

[1] YAN Y T, LI C, LI Z H. Buckling analysis of a 10 MW offshore wind turbine subjected to wind-wave-earthquake loadings[J]. Ocean Engineering, 2021, 236: 109452.
[2]GENTILS T, WANG L, KOLIOS A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied Energy, 2017, 199: 187-204.
[3]MO R J, CAO R J, LIU M H, et al. Seismic fragility analysis of monopile offshore wind turbines considering ground motion directionality[J]. Ocean Engineering, 2021, 235: 109414.
[4]王文达,张丽丽,纪孙航,等.中空夹层钢管混凝土风力机塔架风振性能研究[J].建筑科学与工程学报,2023,40(2):26-39.
WANG Wenda, ZHANG Lili, JI Sunhang, et al. Study on wind vibration performance of concrete-filled double skin steel tubular wind turbine tower[J]. Journal of Architecture and Civil Engineering, 2023, 40(2): 26-39.
[5]史艳莉,纪孙航,王文达,等.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究[J].土木工程学报,2022,55(1):75-88.
SHI Yanli, JI Sunhang, WANG Wenda, et al. Study on hysteretic behavior of tapered concrete-filled double skin steel tubular beam-columns with large hollow ratio[J]. China Civil Engineering Journal, 2022, 55(1): 75-88.
[6]韩 祎,王文达.圆锥形中空夹层钢管混凝土构件压弯剪受力性能研究[J].建筑钢结构进展,2021,23(12):23-32,64.
HAN Yi, WANG Wenda. Research of tapered concrete-filled double skin steel tubular members subjected to shear and axial compression[J]. Progress in Steel Building Structures. 2021, 23(12): 23-32, 64.
[7]王先铁,彭 星,张家平,等.锥形高强中空夹层薄壁钢管混凝土构件的抗弯性能试验研究[J].建筑钢结构进展,2022,24(11):24-33.
WANG Xiantie, PENG Xing, ZHANG Jiaping, et al. An experimental study on the flexural behavior of tapered high-strength thin-walled concrete-filled double skin steel tubular members[J]. Progress in Steel Building Structures, 2022, 24(11): 24-33.
[8]刘 涵,史艳莉,范家浩, 等.圆锥形中空夹层钢管混凝土纯弯构件受力性能研究[J].建筑钢结构进展,2021,23(5):9-17.
LIU Han, SHI Yanli, FAN Jiahao, et al. Research on the mechanical properties of tapered concrete-filled double skin steel tubular members subjected to pure bending load[J]. Progress in Steel Building Structures, 2021, 23(5): 9-17.
[9]WANG W D, FAN J H, SHI Y L, et al. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending[J]. Journal of Constructional Steel Research, 2021, 182: 106689.
[10]史艳莉,张超峰,鲜 威,等.圆锥形中空夹层钢管混凝土偏压构件受力性能研究[J].建筑结构学报,2021,42(5):155-164,176.
SHI Yanli, ZHANG Chaofeng, XIAN Wei, et al. Research on mechanical behavior of tapered concrete-filled double skin steel tubular members under eccentric compression[J]. Journal of Building Structures, 2021, 42(5): 155-164, 176.
[11]LI W, HAN L H, REN Q X, et al. Behavior and calculation of tapered CFDST columns under eccentric compression[J]. Journal of Constructional Steel Research, 2013, 83: 127-136.
[12]史艳莉,张 宸,王景玄,等.圆锥形中空夹层钢管混凝土压弯构件抗震性能[J].建筑科学与工程学报,2019,36(5):80-88.
SHI Yanli, ZHANG Chen, WANG Jingxuan, et al. Seismic behavior of tapered concrete-filled double skin steel tube compression-bending members[J]. Journal of Architecture and Civil Engineering, 2019, 36(5): 80-88.
[13]HUANG H, HAN L H, TAO Z, et al. Analytical behaviour of concrete-filled double skin steel tubular(CFDST)stub columns[J]. Journal of Constructional Steel Research, 2010, 66(4): 542-555.
[14]LI W, REN Q X, HAN L H, et al. Behaviour of tapered concrete-filled double skin steel tubular(CFDST)stub columns[J]. Thin-walled Structures, 2012, 57: 37-48.
[15]中空夹层钢管混凝土结构技术规程:T/CCES 7-2020[S].北京:中国建筑工业出版社,2020.
Technical specification for concrete-filled double skin steel tubular structures: T/CCES 7-2020[S]. Beijing: China Architecture & Building Press, 2020.
[16]DENG R, ZHOU X H, DENG X W, et al. Compressive behaviour of tapered concrete-filled double skin steel tubular stub columns[J]. Journal of Constructional Steel Research, 2021, 184: 106771.
[17]赵均海,顾 强,马淑芳.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学,2002,19(2):32-35.
ZHAO Junhai, GU Qiang, MA Shufang. The study of the axial compressive strength of concrete filled steel tube(CFST)based on the twin shear unified strength theory[J]. Engineering Mechanics, 2002, 19(2): 32-35.
[18]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999,32(4):16-26.
CAI Shaohuai. Recent development of steel tube-confined concrete structures in China[J]. China Civil Engineering Journal, 1999, 32(4): 16-26.
[19]FAN J H, WANG W D, SHI Y L, et al. Torsional behaviour of tapered CFDST members with large void ratio[J]. Journal of Building Engineering, 2022, 52: 104434.
[20]谌扬宇,宁寄慧,张永鑫,等.中空夹层圆钢管混凝土短柱的压弯承载力计算法[J].建筑钢结构进展,2021,23(12):85-93.
CHEN Yangyu, NING Jihui, ZHANG Yongxin, et al. Load bearing capacity calculation method of circular concrete-filled double skin steel tubular stub columns[J]. Progress in Steel Building Structures, 2021, 23(12): 85-93.
[21]Design of concrete structures — part 1-1: general rules and rules for buildings: BS EN 1992-1-1:2004[S]. London: British Standards Institution, 2004.
[22]ZHANG D L, LI W, FU K, et al. Ultimate compressive capacity of tapered concrete-filled double skin steel tubular stub columns with large hollow ratio[J]. Journal of Constructional Steel Research, 2022, 196: 107356.
[23]TAO Z, HAN L H, ZHAO X L. Behaviour of concrete-filled double skin(CHS inner and CHS outer)steel tubular stub columns and beam-columns[J]. Journal of Constructional Steel Research, 2004, 60(8): 1129-1158.
[24]SHI Y L, JI S H, WANG W D, et al. Axial compressive behaviour of tapered CFDST stub columns with large void ratio[J]. Journal of Constructional Steel Research, 2022, 191: 107206.
[25]陈庆胜,庞亚红,孔 龙,等.高强锥形中空夹层薄壁钢管混凝土轴压短柱试验研究[J].西安建筑科技大学学报(自然科学版),2022,54(2):306-316.
CHEN Qingsheng, PANG Yahong, KONG Long, et al. Experimental study on high strength tapered thin walled concrete-filled double skin steel tubular stub columns under axial compression[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2022, 54(2): 306-316.
[26]ZHENG Y Q, WANG C H, CHEN M Y. Flexural strength and stiffness of circular double-skin and double-tube concrete-filled steel tubes[J]. Marine Structures, 2022, 81: 103126.

相似文献/References:

[1]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析[J].建筑科学与工程学报,2010,27(01):60.
 MA Zhi-lin,SHI Qing-xuan,WANG Wei.Elasto-plastic Analysis of Reinforced Concrete Coupled Shear Walls[J].Journal of Architecture and Civil Engineering,2010,27(02):60.
[2]瞿海雁,李国强,孙建运,等.侧向冲击作用下圆钢管混凝土构件的数值模拟分析[J].建筑科学与工程学报,2010,27(01):89.
 QU Hai-yan,LI Guo-qiang,SUN Jian-yun,et al.Numerical Simulation Analysis of Circular Concrete-filled Steel Tube Specimen Under Lateral Impact[J].Journal of Architecture and Civil Engineering,2010,27(02):89.
[3]侯刚,童乐为.较高含碳量冷弯方钢管焊接应力-应变场的数值模拟[J].建筑科学与工程学报,2010,27(02):114.
 HOU Gang,TONG Le-wei.Numerical Simulation of Welding Stress-strain Field for Cold-formed Square Steel Tube with Higher Carbon Content[J].Journal of Architecture and Civil Engineering,2010,27(02):114.
[4]白桦,李加武,夏勇.低雷诺数圆柱绕流数值模拟及控制措施[J].建筑科学与工程学报,2010,27(04):39.
 BAI Hua,LI Jia-wu,XIA Yong.Numerical Simulation and Control Measures of Flow Around Circular Cylinders at Low Reynolds Number[J].Journal of Architecture and Civil Engineering,2010,27(02):39.
[5]李文贵,龙炳煌.高桩码头叉桩节点抗震性能有限元数值模拟[J].建筑科学与工程学报,2010,27(04):86.
 LI Wen-gui,LONG Bing-huang.Finite Element Numerical Simulation of Seismic Behavior for Batter Pile Joint in Pile-wharf Structure[J].Journal of Architecture and Civil Engineering,2010,27(02):86.
[6]邢立坤,王立成,侯宇星.混凝土细观刚体弹簧元法在劈裂试验中的应用[J].建筑科学与工程学报,2011,28(01):83.
 XING Li-kun,WANG Li-cheng,HOU Yu-xing.Application of Mesoscopic Rigid-body-spring Method of Concrete in Splitting Test[J].Journal of Architecture and Civil Engineering,2011,28(02):83.
[7]杨敏,孙庆.隧道开挖对邻近桩基影响的研究综述[J].建筑科学与工程学报,2011,28(01):118.
 YANG Min,SUN Qing.Research Summary of Tunnel Excavation Effects on Adjacent Pile Foundation[J].Journal of Architecture and Civil Engineering,2011,28(02):118.
[8]汪权,王建国,张鸣祥.高层建筑结构随机风速场的数值模拟及风振控制[J].建筑科学与工程学报,2011,28(02):32.
 WANG Quan,WANG Jian-guo,ZHANG Ming-xiang.Numerical Simulation of Stochastic Wind Velocity Field and Wind Vibration Control of High-rise Building Structures[J].Journal of Architecture and Civil Engineering,2011,28(02):32.
[9]赵卫平.基于ANSYS接触分析的粘结-滑移数值模拟[J].建筑科学与工程学报,2011,28(02):44.
 ZHAO Wei-ping.Bond-slip Numerical Simulation Based on ANSYS Contact Analysis[J].Journal of Architecture and Civil Engineering,2011,28(02):44.
[10]吕奇峰,黄明利.岩土体弹性参数表面测试方法[J].建筑科学与工程学报,2011,28(04):116.
 LU Qi-feng,HUANG Ming-li.Test Method of Elastic Parameters on Surface of Rock and Soil[J].Journal of Architecture and Civil Engineering,2011,28(02):116.

备注/Memo

备注/Memo:
收稿日期:2023-04-01
基金项目:国家自然科学基金项目(51978570); 国网浙江省电力有限公司科技项目(5211JY220003)
作者简介:王淑红(1972-),女,高级工程师,E-mail:909780460@qq.com。
通信作者:孙 清(1970-),男,工学博士,教授,博士生导师,E-mail:sunq@mail.xjtu.edu.cn。
Author resumes: WANG Shuhong(1972-), female, senior engineer, E-mail:909780460@qq.com; SUN Qing(1970-), male, PhD, professor, E-mail: sunq@mail.xjtu.edu.cn.
更新日期/Last Update: 2025-03-20