|本期目录/Table of Contents|

[1]唐宇翔,肖建庄,夏冰.三点弯曲下再生砂浆断裂性能与裂纹扩展过程[J].建筑科学与工程学报,2025,42(02):114-121.[doi:10.19815/j.jace.2023.04037]
 TANG Yuxiang,XIAO Jianzhuang,XIA Bing.Fracture properties and crack propagation process of recycled mortar under three-point bending[J].Journal of Architecture and Civil Engineering,2025,42(02):114-121.[doi:10.19815/j.jace.2023.04037]
点击复制

三点弯曲下再生砂浆断裂性能与裂纹扩展过程(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
114-121
栏目:
建筑材料
出版日期:
2025-03-20

文章信息/Info

Title:
Fracture properties and crack propagation process of recycled mortar under three-point bending
文章编号:
1673-2049(2025)02-0114-08
作者:
唐宇翔1,2,肖建庄1,3,夏冰1
(1. 同济大学 土木工程学院,上海 200092; 2.长沙理工大学 交通学院,湖南 长沙 410114; 3. 广西大学 双碳科学与技术研究院,广西 南宁 530004)
Author(s):
TANG Yuxiang1,2, XIAO Jianzhuang1,3, XIA Bing1
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China; 2. School of Transportation, Changsha University of Science & Technology, Changsha 410114, Hunan, China; 3. Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi University, Nanning 530004, Guangxi, China)
关键词:
再生砂浆 再生细骨料取代率 三点弯曲断裂试验K断裂韧度 断裂能 裂纹扩展特性
Keywords:
recycled mortar replacement ratio of recycled fine aggregate three-point bending fracture test double-K fracture toughness fracture energy crack propagation characteristic
分类号:
TU528
DOI:
10.19815/j.jace.2023.04037
文献标志码:
A
摘要:
为研究再生细骨料(RFA)取代率对砂浆断裂性能与裂纹扩展特性的影响,开展了4种RFA取代率(0%、25%、50%和100%)下的砂浆断裂行为试验研究。基于三点弯曲切口梁试验,获得再生砂浆断裂响应,包括完整的荷载-裂纹口张开位移曲线、临界裂纹扩展、起裂韧度、失稳韧度与断裂能。利用非接触式数字图像相关技术,测得试件表面变形,获取再生砂浆裂纹发展全过程。结果表明:RFA的使用降低了再生砂浆荷载-位移曲线的初始线性段斜率与峰值荷载,主要影响再生砂浆临界裂纹宽度方向的张开而不是裂纹长度方向的扩展; 再生砂浆的起裂韧度、失稳韧度和断裂能随着RFA取代率的增加而逐渐减小,当RFA取代率为100%时,砂浆的起裂韧度、失稳韧度和断裂能分别减小了31.1%、29.5%和37.8%; 不同RFA取代率下再生砂浆的断裂过程区长度lFPZ发展表现出相似的特征,即先缓慢发展至峰值荷载(lFPZ为0.24倍~0.32倍的韧带长度),接着迅速增加至完全发展(lFPZ为0.83倍~0.91倍的韧带长度),之后lFPZ随裂纹的扩展而减小。
Abstract:
To investigate the effect of the replacement ratios of recycled fine aggregate(RFA)on the fracture properties and crack propagation characteristics of mortar, experimental studies were conducted on the fracture behavior of mortar with four types of RFA replacement ratios(0%, 25%, 50%, and 100%). Based on the three-point bending notched beam tests, the fracture responses of recycled mortar were obtained, including the complete load-crack mouth opening displacement curves, critical crack propagation, initial cracking toughness, unstable toughness, and fracture energy. By using non-contact digital image correlation technology, the surface deformation of the specimen was measured to obtain the entire process of crack propagation in recycled mortar. The results show that the use of RFA reduces the initial linear slope and peak load of the load-displacement curves of recycled mortar, mainly affecting the critical crack propagation in the opening direction rather than the extension direction. The initial cracking toughness, unstable toughness, and fracture energy of recycled mortar gradually decrease with the increase of RFA replacement ratio. When the RFA replacement ratio is 100%, the initial cracking toughness, unstable toughness, and fracture energy of mortar decrease by 31.1%, 29.5%, and 37.8%, respectively. The development of the fracture process zone length of recycled mortar lFPZ with different RFA replacement ratio exhibits similar characteristics, which slowly develops to the peak load(0.24 times to 0.32 times the ligament length), then rapidly increases to fully development(0.83 times to 0.91 times the ligament length), and then lFPZ decreases with crack propagation.

参考文献/References:

[1] 肖建庄,张航华,唐宇翔,等.废弃混凝土再生原理与再生混凝土基本问题[J].科学通报,2023,68(5):510-523.
XIAO Jianzhuang, ZHANG Hanghua, TANG Yu-xiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete[J]. Chinese Science Bulletin, 2023, 68(5): 510-523.
[2]徐世烺.混凝土断裂力学[M].北京: 科学出版社,2011.
XU Shilang.Fracture mechanics of concrete[M]. Beijing: Science Press, 2011.
[3]GHORBEL E, WARDEH G. Influence of recycled coarse aggregates incorporation on the fracture properties of concrete[J]. Construction and Building Materials, 2017, 154: 51-60.
[4]DILBAS H, ÖZGÜR C, YILDIRIM H. An experimental investigation on fracture parameters of recycled aggregate concrete with optimized ball milling method[J]. Construction and Building Materials, 2020, 252: 119118.
[5]LI T, XIAO J Z, ZHANG Y M, et al. Fracture behavior of recycled aggregate concrete under three-point bending[J]. Cement and Concrete Composites, 2019, 104: 103353.
[6]肖建庄,许金校,罗素蓉,等.剑麻纤维对再生骨料混凝土断裂性能的影响[J].建筑材料学报,2023,26(6):587-595.
XIAO Jianzhuang, XU Jinxiao, LUO Surong, et al. Effect of sisal fiber on fracture performance of recycled dggregate concrete[J]. Journal of Building Materials, 2023, 26(6): 587-595.
[7]NEDELJKOVIC M, VISSER J, BRANKO S, et al. Use of fine recycled concrete aggregates in concrete: a critical review[J]. Journal of Building Engineering, 2021, 38: 102196.
[8]AKONO A T, CHEN J X, ZHAN M M, et al. Basic creep and fracture response of fine recycled aggregate concrete[J]. Construction and Building Materials, 2021, 266: 121107.
[9]XIAO J Z, TANG Y X, CHEN H N, et al. Effects of recycled aggregate combinations and recycled powder contents on fracture behavior of fully recycled aggregate concrete[J]. Journal of Cleaner Production, 2022, 366: 132895.
[10]TAM V W Y, TAM C M, WANG Y. Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach[J]. Construction and Building Materials, 2007, 21(10): 1928-1939.
[11]XU S L, LI Q H, WU Y, et al. RILEM standard: testing methods for determination of the double-K criterion for crack propagation in concrete using wedge-splitting tests and three-point bending beam tests, recommendation of RILEM TC265-TDK[J]. Materials and Structures, 2021, 54(6): 220.
[12]KUMAR R, GURRAM S C B, MINOCHA A K. Influence of recycled fine aggregate on microstructure and hardened properties of concrete[J]. Magazine of Concrete Research, 2017, 69(24): 1288-1295.
[13]王春晖,肖建庄.再生细骨料混凝土材料性能与结构行为研究评述[J].土木工程学报,2022,55(5):37-53.
WANG Chunhui, XIAO Jianzhuang. Material properties and structural behaviors of recycled fine aggregate concrete: an overview[J]. China Civil Engineering Journal, 2022, 55(5): 37-53.
[14]JENQ Y, SHAH S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 111(10): 1227-1241.
[15]尹阳阳,胡少伟.小跨高比混凝土三点弯曲梁双K断裂参数研究[J].工程力学,2020,37(12):138-146,170.
YIN Yangyang, HU Shaowei. Double-k fracture parameters of concrete in three-point bending beams with small span-depth ratios[J]. Engineering Mechanics, 2020, 37(12): 138-146, 170.
[16]RILEM D R. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(4): 287-290.
[17]HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781.
[18]WU Z M, RONG H, ZHENG J J, et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique[J]. Engineering Fracture Mechanics, 2011, 78(17): 2978-2990.
[19]TANG Y X, CHEN H N. Characterizations on fracture process zone of plain concrete[J]. Journal of Civil Engineering and Management, 2019, 25(8): 819-830.
[20]唐宇翔,陈红鸟,王青原,等.基于扩展有限元法的混凝土断裂参数研究[J].应用力学学报,2019,36(6):1307-1313.
TANG Yuxiang, CHEN Hongniao, WANG Qingyuan, et al. Study on fracture parameters of concrete based on extended finite element method[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1307-1313.
[21]PETERSSON P. Crack growth and development of fracture zones in plain concrete and similar materials[R]. Sweden: Lund University, 1981
[22]CEB-FIP model code 1990: CEB-90[S]. Brussels: Committee Euro-International Du Beton, 1991.

相似文献/References:

[1]应敬伟,王威伻,苏飞鸣.压弯荷载下再生砂浆的裂纹演变与氯离子扩散[J].建筑科学与工程学报,2024,41(06):89.[doi:10.19815/j.jace.2022.06092]
 YING Jingwei,WANG Weibeng,SU Feiming.Cracking development and chloride ion penetration of recycled mortar under compression bending load[J].Journal of Architecture and Civil Engineering,2024,41(02):89.[doi:10.19815/j.jace.2022.06092]

备注/Memo

备注/Memo:
收稿日期:2023-04-05
基金项目:国家重点研发计划项目(2022YFC3803400,2022YFE0198300); 国家自然科学基金项目(52078358); 上海市科委“科技创新行动计划”科技支撑项目(22dz1207300)
作者简介:唐宇翔(1996-),男,工学博士,博士后,E-mail:yxtang@tongji.edu.cn。
通信作者:肖建庄(1968-),男,工学博士,教授,博士生导师,E-mail:jzx@tongji.edu.cn。
Author resumes: TANG Yuxiang(1996-), male, PhD, E-mail: yxtang@tongji.edu.cn; XIAO Jianzhuang(1968-), male, PhD, professor, E-mail:jzx@tongji.edu.cn.
更新日期/Last Update: 2025-03-20