|本期目录/Table of Contents|

[1]朱彦鹏,张辉,王雪浪,等.新型叶片式螺旋钢管桩极限承载性能研究[J].建筑科学与工程学报,2025,42(02):180-189.[doi:10.19815/j.jace.2023.07073]
 ZHU Yanpeng,ZHANG Hui,WANG Xuelang,et al.Study on ultimate bearing capacity of new type of blade-type spiral steel pipe pile[J].Journal of Architecture and Civil Engineering,2025,42(02):180-189.[doi:10.19815/j.jace.2023.07073]
点击复制

新型叶片式螺旋钢管桩极限承载性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
180-189
栏目:
岩土工程
出版日期:
2025-03-20

文章信息/Info

Title:
Study on ultimate bearing capacity of new type of blade-type spiral steel pipe pile
文章编号:
1673-2049(2025)02-0180-10
作者:
朱彦鹏1,2,张辉1,2,王雪浪3,朱嘉辉1,2,黄安平1,2,张兴旺1,2,王澳1,2
(1. 兰州理工大学 土木工程学院,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050; 3. 兰州理工大学 建筑与设计艺术学院,甘肃 兰州 730050)
Author(s):
ZHU Yanpeng1,2, ZHANG Hui1,2, WANG Xuelang3, ZHU Jiahui1,2, HAUNG Anping1,2, ZHANG Xingwang1,2, WANG Ao1,2
(1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 3. School of Architecture and Art Design, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)
关键词:
新型叶片式螺旋钢管桩 极限承载力 现场试验 数值模拟 叶片参数
Keywords:
new type of blade-type spiral steel pipe pile ultimate bearing capacity on-site test numerical simulation blade parameter
分类号:
TU473
DOI:
10.19815/j.jace.2023.07073
文献标志码:
A
摘要:
针对传统叶片式螺旋钢管桩在承载力方面的局限性,通过改良其几何结构,提出了一种叶片直径递变的新型叶片式螺旋钢管桩以提升其极限承载力。进行了6组抗压试验和6组抗拔试验,每组抗压试验包含1根桩,每组抗拔试验包含2根桩,以研究叶片间距和叶片直径递变对螺旋钢管桩承载力的影响; 利用ABAQUS数值模拟软件建立模型,并与实测数据进行对比,以验证模型的精确性和准确性。通过对比现场试验结果与数值模拟结果,分析改良后的新型叶片式螺旋钢管桩在极限承载力方面的提升效果。结果表明:叶片参数的改变对螺旋钢管桩的承载力具有显著影响,叶片直径的递变与螺旋钢管桩的极限承载力呈正相关关系,即叶片直径的适当增加能够显著提升桩的承载力; 叶片间距决定着螺旋钢管桩的承载模式,叶片间距改变同样会对桩的极限承载力产生影响; 在用钢量相同的情况下,新型叶片式螺旋钢管桩的抗压承载力相比传统螺旋钢管桩提升了约28%,抗拔承载力提升了约13%; 验证了ABAQUS数值模拟软件在新型叶片式螺旋钢管桩承载力分析中的可行性,也进一步证明了该桩型在村镇住宅承载力不均匀地基中应用的可靠性。
Abstract:
In view of the limitations of traditional blade-type spiral steel pipe piles in terms of bearing capacity, a new type of blade-type spiral steel pipe pile with gradually changing blade diameter was proposed by improving its geometric structure to enhance its ultimate bearing capacity. Six sets of compressive tests and six sets of tensile tests were conducted, with one pile in each set of compressive tests and two piles in each set of tensile tests, to study the influence of blade spacing and blade diameter variation on the bearing capacity of spiral steel pipe piles. A model was established by using numerical simulation software ABAQUS and compared with measured data to verify the accuracy and precision of the model. By comparing on-site test results with numerical simulation results, the improvement effect of the new blade-type spiral steel pipe pile on the ultimate bearing capacity was analyzed. The results show that the change of blade parameters has a significant impact on the bearing capacity of spiral steel pipe piles. The gradual variation of blade diameter is positively correlated with the ultimate bearing capacity of spiral steel pipe piles, that is, an appropriate increase in blade diameter can significantly improve the bearing capacity of piles. The blade spacing determines the bearing mode of spiral steel pipe piles, and any changes in it will also affect the ultimate bearing capacity of the piles. Under the same amount of steel used, compared with traditional spiral steel pipe piles, the compressive bearing capacity of the new blade-type spiral steel pipe pile is increased by about 28%, and the tensile bearing capacity is increased by about 13%. The feasibility of using ABAQUS numerical simulation software in the analysis of the bearing capacity of the new type of blade-type spiral steel pipe pile is verified, and the reliability of this pile type in the uneven bearing capacity foundation of rural residential buildings is further demonstrated.

参考文献/References:

[1] MAHMOOD M R, SALIM N M, AL-GEZZY A A. Effect of soil saturation conditions and helical configurations on compression capacity of screw piles[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1058(1): 012031.
[2]DEBNATH A, SINGH V P. Analysis and design methods of helical piles: a critical review with emphasis on finite element method[J]. Arabian Journal of Geosciences, 2022, 15(18): 1496.
[3]彭丽云.叶片式钢管螺旋桩基理论与技术[M].北京:人民交通出版社,2020.
PENG Liyun. Theory and technology of vane type steel pipe spiral pile foundation[M]. Beijing: China Communications Press, 2020.
[4]ASFAW N T, LEI G, AZIZIAN M,et al. Field pull-out tests of percussion driven earth anchors(PDEAs)[J]. Applied Sciences, 2023, 13(4): 2132.
[5]DAS B M. Shallow foundations: bearing capacity and settlement[M]. Boca Raton: CRC Press, 2017.
[6]MUKHERJEE S, KUMAR L, CHOUDHARY A K, et al. Pullout resistance of inclined anchors embedded in geogrid reinforced sand[J].Geotextiles and Geomembranes, 2021, 49(5): 1368-1379.
[7]VANDERMEER J, MUELLER-STOFFELS M,WHITNEY E.Wind power project size and component costs: an Alaska case study[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6): 061703.
[8]LI W D, ZHANG D J Y, SEGO D C, et al. Field testing of axial performance of large-diameter helical piles at two soil sites[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 06017021.
[9]BAK H M, HALABIAN A M, HASHEMOLHOSSEINI H, et al. Axial response and material efficiency of tapered helical piles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 176-187.
[10]SHUMAN N M, KHAN S, AMINI F. Settlement based load capacity curve for single helix helical pile in c-φ soil[J]. Soils and Foundations, 2023, 63(1): 101265.
[11]SPAGNOLI G, DE HOLLANDA CAVALCANTI TSUHA C. A review on the behavior of helical piles as a potential offshore foundation system[J]. Marine Georesources & Geotechnology, 2020, 38(9): 1013-1036.
[12]NOWKANDEH M J, CHOOBBASTI A J. Numerical study of single helical piles and helical pile groups under compressive loading in cohesive and cohesionless soils[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(5): 4001-4023.
[13]VIGNESH V, MAYAKRISHNAN M. Design parameters and behavior of helical piles in cohesive soils-a review[J]. Arabian Journal of Geosciences, 2020, 13(22): 1194.
[14]HO H M, MALIK A A, KUWANO J, et al. Experimental and numerical study on pressure distribution under screw and straight pile in dense sand[J]. International Journal of Geomechanics, 2022, 22(9): 04022139.
[15]董天文,梁 力,王 炜,等.抗拔螺旋桩叶片与地基相互作用试验研究[J].工程力学,2008,25(8):150-155,163.
DONG Tianwen, LIANG Li, WANG Wei, et al. Experimental analysis on the lamina-soils interaction in pullout screw pile foundation[J].Engineering Mechanics, 2008, 25(8): 150-155, 163.
[16]董天文,张亚军,梁 力.螺旋桩基础破坏机理与承载力设计方法[M].沈阳:东北大学出版社,2011.
DONG Tianwen, ZHANG Yajun, LIANG Li. Failure mechanism and bearing capacity design method of spiral pile foundation[M]. Shenyang:Northeast University Press, 2011.
[17]刘兵科.叶片式钢管螺旋桩试验研究及桩型参数优化[J].施工技术,2019,48(4):93-97.
LIU Bingke. Experimental research and parameters optimization on screw piles with steel blade[J]. Construction Technology, 2019, 48(4): 93-97.
[18]李绪勇,杨忠平,刘 纲,等.隔离式螺旋桩抗压承载与抗地基冻融特性[J].岩土工程学报,2024,46(6):1187-1196.
LI Xuyong, YANG Zhongping, LIU Gang, et al. Characteristics of compressive bearing capacity and resistance to foundation freeze-thaw of the isolation helical pile[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1187-1196.
[19]建筑桩基技术规范:JGJ 94—2008[S].北京:中国建筑工业出版社,2008.
Technical code for building pile foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008.
[20]王曙光,冯 浙,唐建中,等.竖向荷载作用下螺杆灌注桩受压承载机理的试验研究[J].岩土工程学报,2021,43(2):383-389.
WANG Shuguang, FENG Zhe, TANG Jianzhong, et al. Experimental study on bearing mechanism of screw cast-in-place piles under vertical loads[J]. Chinese Journal of Geotechnical Engineering,2021, 43(2): 383-389.

相似文献/References:

[1]肖海兵,赵均海,孙珊珊,等.方形薄壁钢管轻骨料混凝土短柱的承载力[J].建筑科学与工程学报,2010,27(02):83.
 XIAO Hai-bing,ZHAO Jun-hai,SUN Shan-shan,et al.Bearing Capacity of Short Column of Lightweight Aggregate Concrete-filled Square Thin-walled Steel Tube[J].Journal of Architecture and Civil Engineering,2010,27(02):83.
[2]陈以一,蒋路.带缝钢板剪力墙的承载力和开缝参数研究[J].建筑科学与工程学报,2010,27(03):109.
 CHEN Yi-yi,JIANG Lu.Research on Bearing Capacity and Slit Parameters of Steel Plate Shear Wall with Slits[J].Journal of Architecture and Civil Engineering,2010,27(02):109.
[3]张云鹏,刁波,叶英华.基于Timoshenko与高阶剪切变形梁理论的RC梁极限承载力分析[J].建筑科学与工程学报,2011,28(03):67.
 ZHANG Yun-peng,DIAO Bo,YE Ying-hua.Ultimate Bearing Capacities of RC Beam Based on Timoshenko and Higher-order Shear Deformation Beam Theories[J].Journal of Architecture and Civil Engineering,2011,28(02):67.
[4]刘向斌,周天华,聂少锋,等.冷弯薄壁型钢开口三肢拼合立柱轴压性能有限元分析[J].建筑科学与工程学报,2011,28(03):119.
 LIU Xiang-bin,ZHOU Tian-hua,NIE Shao-feng,et al.Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2011,28(02):119.
[5]袁晓洒,郑宏,于长亮.钢框架内填钢板深梁协同分析[J].建筑科学与工程学报,2012,29(02):43.
 YUAN Xiao-sa,ZHENG Hong,YU Chang-liang.Interactive Analysis of Steel Deep Beam Infilling Steel Frame[J].Journal of Architecture and Civil Engineering,2012,29(02):43.
[6]潘斌,石永久,王元清.Q460等级高强度钢材螺栓抗剪连接孔壁承压性能有限元分析[J].建筑科学与工程学报,2012,29(02):48.
 PAN Bin,SHI Yong-jiu,WANG Yuan-qing.Finite Element Analysis of Bolted Connection in Q460 Grade High Strength Steels Under Static Shear[J].Journal of Architecture and Civil Engineering,2012,29(02):48.
[7]屈讼昭,王志骞.波形钢腹板H型截面梁抗剪性能理论研究[J].建筑科学与工程学报,2012,29(02):111.
 QU Song-zhao,WANG Zhi-qian.Theoretical Research of Shear Performance of H-section Beams with Corrugated Steel Webs[J].Journal of Architecture and Civil Engineering,2012,29(02):111.
[8]李帼昌,韩刘.内置CFRP圆管的方钢管混凝土中长柱偏压试验[J].建筑科学与工程学报,2009,26(01):1.
 LI Guo-chang,HAN Liu.Experiment on Eccentrically Compression of Middle Long Columns of Concrete-filled Square Steel Tube with Inner CFRP Circular Tube[J].Journal of Architecture and Civil Engineering,2009,26(02):1.
[9]张志权,赵胜民,张玉芬,等.外方内圆钢管混凝土轴压承载力计算方法[J].建筑科学与工程学报,2009,26(02):63.
 ZHANG Zhi-quan,ZHAO Sheng-min,ZHANG Yu-fen,et al.Calculation Method of Axial Bearing Capacity of Concrete-filled Square Steel Tubular Columns Reinforced by Inner Circular Steel Tube[J].Journal of Architecture and Civil Engineering,2009,26(02):63.
[10]董毓利.火灾时钢筋混凝土板的承载力计算[J].建筑科学与工程学报,2009,26(04):14.
 DONG Yu-li.Calculation of Bearing Capacity of RC Concrete Slabs in Fire[J].Journal of Architecture and Civil Engineering,2009,26(02):14.

备注/Memo

备注/Memo:
收稿日期:2023-07-22
基金项目:国家自然科学基金项目(51978321); 教育部长江学者和创新团队支持计划项目(IRT_17R51)
作者简介:朱彦鹏(1960-),男,工学博士,教授,博士生导师,E-mail:zhuyp1@163.com。
通信作者:王雪浪(1973-),男,工学博士,教授,E-mail:394605975@qq.com。
Author resumes: ZHU Yanpeng(1960-), male, PhD, professor, E-mail: zhuyp1@163.com; WANG Xuelang(1973-), male, PhD, professor, E-mail: 394605975@qq.com.
更新日期/Last Update: 2025-03-20