|本期目录/Table of Contents|

[1]温博,翁效林,侯乐乐,等.湿陷性黄土的一维压缩模型及其应用[J].建筑科学与工程学报,2025,42(02):190-200.[doi:10.19815/j.jace.2023.03061]
 WEN Bo,WENG Xiaolin,HOU Lele,et al.One-dimensional compression model of collapsible loess and its application[J].Journal of Architecture and Civil Engineering,2025,42(02):190-200.[doi:10.19815/j.jace.2023.03061]
点击复制

湿陷性黄土的一维压缩模型及其应用(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
190-200
栏目:
岩土工程
出版日期:
2025-03-20

文章信息/Info

Title:
One-dimensional compression model of collapsible loess and its application
文章编号:
1673-2049(2025)02-0190-11
作者:
温博1,2,翁效林1,2,侯乐乐1,2,耿英俏1,2,成志杰1,2
(1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064)
Author(s):
WEN Bo1,2, WENG Xiaolin1,2, HOU Lele1,2, GENG Yingqiao1,2, CHENG Zhijie1,2
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
湿陷性黄土 含水率 一维压缩 扰动状态理论
Keywords:
collapsible loess moisture content one-dimensional compression disturbed state concept
分类号:
TU432
DOI:
10.19815/j.jace.2023.03061
文献标志码:
A
摘要:
以不同初始含水率下的原状黄土和重塑黄土为研究对象,通过侧限压缩试验和微观电镜扫描试验,深入探究了湿陷性黄土在不同初始含水率下的变形及湿陷特性。基于扰动状态理论,在充分考虑了湿陷性黄土结构组成以及初始含水率的影响后建立了能够预测不同初始含水率下原状黄土一维压缩行为的扰动状态理论(DSC)模型,并选用渭南黄土对其室内试验结果与预测结果进行对比。提出了基于DSC模型的湿陷性黄土湿陷系数及场地变形量的预测方法,并通过与室内试验结果对比验证模型的合理性和实用性。结果表明:原状黄土压缩曲线存在明显的转折点,重塑黄土压缩曲线未出现明显转折且近似表现为倾斜的直线; 重塑黄土相较于原状黄土的孔隙结构更加密实; 初始含水率对原状黄土及重塑黄土的变形特性均产生较大影响且初始含水率越大,黄土的屈服应力越小; 初始含水率对于原状和重塑黄土的微观结构均有显著影响,随着试样初始含水率的增大,土体内部架空结构逐渐破坏,湿陷性逐渐被消除。
Abstract:
Taking undisturbed loess and remolded loess with different initial moisture contents as the research objects, the deformation and collapsibility characteristics of collapsible loess under different initial moisture contents were deeply explored through lateral compression tests and microscopic electron microscopy scanning tests. Based on the disturbance state theory, a disturbed state concept(DSC)model was established to predict the one-dimensional compression behavior of undisturbed loess under different initial moisture contents, taking into account the structural composition of collapsible loess and the influence of initial moisture content. The Weinan loess was selected to compare its indoor test results with the predicted results. A DSC model-based prediction method for the collapsibility coefficient and site deformation of collapsible loess was proposed, and the rationality and practicality of the model were verified by comparing prediction results with indoor test results. The results show that the compression curve of undisturbed loess has obvious turning points, while the compression curve of remolded loess does not show obvious turning points and is approximately represented by a tilted straight line. The pore structure of remolded loess is more dense than that of undisturbed loess. The initial moisture content has a significant impact on the deformation characteristics of both undisturbed loess and remolded loess, and the higher the initial moisture content, the lower the yield stress of loess. The initial moisture content has a significant impact on the microstructure of both undisturbed and remolded loess. As the initial moisture content of the sample increases, the internal hollow structure of the soil gradually breaks down and the collapsibility is gradually eliminated.

参考文献/References:

[1] 崔靖俞,张吾渝,解邦龙,等.西宁地区不同深度原状黄土湿陷性及微观机理研究[J].岩土工程学报,2019,41(增2):249-252.
CUI Jingyu, ZHANG Wuyu, XIE Banglong, et al. Collapsibility and microscopic mechanism of intact loess at different depths in Xining area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 249-252.
[2]胡再强,沈珠江,谢定义.非饱和黄土的显微结构与湿陷性[J].水利水运科学研究,2000(2):68-71.
HU Zaiqiang, SHEN Zhujiang, XIE Dingyi. Micro structure and inundation of unsaturated loess[J]. Journal of Nanjing Hydraulic Research Institute, 2000(2): 68-71.
[3]沙爱民,陈开圣.压实黄土的湿陷性与微观结构的关系[J].长安大学学报(自然科学版),2006,26(4):1-4.
SHA Aimin, CHEN Kaisheng. Relationship between collapsibility and microstructure of compacted loess[J]. Journal of Chan'an University(Natural Science Edition), 2006, 26(4): 1-4.
[4]陈 阳,李喜安,黄润秋,等.影响黄土湿陷性因素的微观试验研究[J].工程地质学报,2015,23(4):646-653.
CHEN Yang, LI Xian, HUANG Runqiu, et al. Micro experimental research on influence factors of loess collapsibility[J]. Journal of Engineering Geology, 2015, 23(4): 646-653.
[5]苏 英,刘俊峰.黄土的湿陷性与显微结构特征研究: 以咸阳市区为例[J].宁夏大学学报(自然科学版),2007,28(3):282-285.
SU Ying, LIU Junfeng. Study of collapsibility and micro-textures of loess: taking the loess in Xianyang downtown area as an example[J]. Journal of Ningxia University(Natural Science Edition), 2007, 28(3): 282-285.
[6]苗天德,王正贵.考虑微结构失稳的湿陷性黄土变形机理[J].中国科学:化学,1990,20(1):86-96.
MIAO Tiande, WANG Zhenggui. Deformation mechanism of collapsible loess considering microstructure instability[J]. Scientia Sinica(Chimica), 1990, 20(1): 86-96.
[7]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4):383-387.
MIAO Tiande, LIU Zhongyu, REN Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.
[8]刘祖典.影响黄土湿陷系数因素的分析[J].工程勘察,1994,22(5):6-11.
LIU Zudian. Analysis of factors affecting collapsibility coefficient of loess[J]. Geotechnical Investigation & Surveying, 1994, 22(5): 6-11.
[9]党进谦,郝月清.含水量对黄土结构强度的影响[J].西北水资源与水工程,1998,9(2):15-19.
DANG Jinqian, HAO Yueqing. Effect of water content on the structure strength of loess[J]. Journal of Water Resources and Water Engineering, 1998, 9(2): 15-19.
[10]蔡国庆,张 策,黄哲文,等.含水率对砂质Q3黄土抗剪强度影响的试验研究[J].岩土工程学报,2020,42(增2):32-36.
CAI Guoqing, ZHANG Ce, HUANG Zhewen, et al. Experimental study on the influence of moisture content on shear strength of sandy Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 32-36.
[11]孙 强,张晓科,李厚恩.湿陷性黄土变形的微结构突变模型研究[J].岩土力学,2008,29(3):663-666,672.
SUN Qiang, ZHANG Xiaoke, LI Houen. Research on microstructural catastrophe model of deformation of collapsible loess[J]. Rock and Soil Mechanics, 2008, 29(3): 663-666, 672.
[12]姚志华,连 杰,陈正汉,等.考虑细观结构演化的非饱和Q3原状黄土弹塑性本构模型[J].岩土力学,2018,39(5):1553-1563.
YAO Zhihua, LIAN Jie, CHEN Zhenghan, et al. An elastic-plastic constitutive model for unsaturated Q3 undisturbed loess considering meso-structured evolution[J]. Rock and Soil Mechanics, 2018, 39(5): 1553-1563.
[13]陈存礼,高 鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J].岩石力学与工程学报,2006,25(7):1352-1360.
CHEN Cunli, GAO Peng, HU Zaiqiang. Moistening deformation characteristic of loess and its relation to structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1352-1360.
[14]陈存礼,贾亚军,金 娟,等.含水率及应力对原状黄土静止侧压力系数的影响[J].岩石力学与工程学报,2017,36(增1): 3535-3542.
CHEN Cunli, JIA Yajun, JIN Juan, et al. Influences of water content and stress on coefficient of lateral pressure at rest of undisturbed loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3535-3542.
[15]陈存礼,蒋 雪,杨 炯,等.结构性对压实黄土侧限压缩特性的影响[J].岩石力学与工程学报,2014,33(9):1939-1944.
CHEN Cunli, JIANG Xue, YANG Jiong, et al. Influence of soil structure on confined compression behaviour of compacted loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1939-1944.
[16]邵生俊,龙吉勇,杨 生,等.湿陷性黄土结构性变形特性分析[J].岩土力学,2006,27(10):1668-1672.
SHAO Shengjun, LONG Jiyong, YANG Sheng, et al. Analysis of structural deformation properties of collapsible loess[J]. Rock and Soil Mechanics, 2006, 27(10): 1668-1672.
[17]邵生俊,郑 文,王正泓,等.黄土的构度指标及其试验确定方法[J].岩土力学,2010,31(1):15-19.
SHAO Shengjun, ZHENG Wen, WANG Zhenghong, et al. Structural index of loess and its testing method[J]. Rock and Soil Mechanics, 2010, 31(1): 15-19.
[18]土工试验方法标准:GB/T 50123—2019[S].北京:中国计划出版社,2019.
Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.
[19]张玉伟,翁效林,宋战平,等.考虑黄土结构性和各向异性的修正剑桥模型[J].岩土力学,2019,40(3):1030-1038.
ZHANG Yuwei, WENG Xiaolin, SONG Zhanping, et al. A modified Cam-clay model for structural and anisotropic loess[J]. Rock and Soil Mechanics, 2019, 40(3): 1030-1038.
[20]刘维正,石名磊,缪林昌.基于扰动状态概念的结构性土压缩特性分析[J].岩土力学,2010,31(11):3475-3480.
LIU Weizheng, SHI Minglei, MIAO Linchang. Analysis of compressibility of structural soils based on disturbed state concept[J]. Rock and Soil Mechanics, 2010, 31(11): 3475-3480.
[21]DESAI C S, ZHANG W. Computational aspects of disturbed state constitutive models[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 151(3/4): 361-376.
[22]DESAI C S. Mechanics of materials and interfaces: the disturbed state concept[M]. Boca Raton: CRC Press, 2001.
[23]LIU M D, CARTER J P, DESAI C S, et al. Analysis of the compression of structured soils using the disturbed state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723-735.
[24]ZENG L L, HONG Z S, CUI Y J. Determining the virgin compression lines of reconstituted clays at different initial water contents[J]. Canadian Geotechnical Journal, 2015, 52(9): 1408-1415.
[25]侯乐乐,翁效林,李 林,等.考虑含水率影响的结构性黄土临界状态模型[J].岩土力学,2022,43(3):737-748.
HOU Lele, WENG Xiaolin, LI Lin, et al. A critical state model for structural loess considering water content[J]. Rock and Soil Mechanics, 2022, 43(3): 737-748.
[26]胡再强,沈珠江,谢定义. 非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779.
HU Zaiqiang, SHEN Zhujiang, XIE Dingyi. Research on structural behavior of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 775-779.
[27]陈存礼,胡再强,高 鹏. 原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891-1896.
CHEN Cunli, HU Zaiqiang, GAO Peng. Research on relationship between structure and deformation property of intact loess[J]. Rock and Soil Mechanics, 2006, 27(11): 1891-1896.
[28]邵生俊,陈 菲,邵 帅.黄土隧道地基湿陷变形评价方法探讨[J].岩石力学与工程学报,2017,36(5):1289-1300.
SHAO Shengjun, CHEN Fei, SHAO Shuai. Collapse deformation evaluation method of loess tunnel foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1289-1300.
[29]邵生俊,王丽琴,邵 帅,等.黄土的结构屈服及湿陷变形的分析[J].岩土工程学报,2017,39(8):1357-1365.
SHAO Shengjun, WANG Liqin, SHAO Shuai, et al. Structural yield and collapse deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1357-1365.
[30]邵生俊,李 骏,李国良,等.大厚度自重湿陷黄土湿陷变形评价方法的研究[J].岩土工程学报,2015,37(6):965-978.
SHAO Shengjun, LI Jun, LI Guoliang, et al. Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965-978.

相似文献/References:

[1]韩佳明,苏三庆.降雨入渗下渭北地坑黄土窑洞稳定性分析[J].建筑科学与工程学报,2012,29(03):104.
 HAN Jia-ming,SU San-qing.Stability Analysis of Weibei Pitted Loess Cave Dwellings in Rainfall Infiltration[J].Journal of Architecture and Civil Engineering,2012,29(02):104.
[2]周茗如,陈志超,罗小博,等.湿陷性黄土中水泥浆液注浆加固机理[J].建筑科学与工程学报,2017,34(06):65.
 ZHOU Ming-ru,CHEN Zhi-chao,LUO Xiao-bo,et al.Reinforcement Mechanism of Cement Slurry Grouting in Collapsible Loess[J].Journal of Architecture and Civil Engineering,2017,34(02):65.
[3]梁燕,赵桂娟,谢永利,等.黄土增湿变形的数值模型[J].建筑科学与工程学报,2007,24(03):43.
 LIANG Yan,ZHAO Gui-juan,XIE Yong-li,et al.Numerical Model of Loess Moistening Deformation[J].Journal of Architecture and Civil Engineering,2007,24(02):43.
[4]朱彦鹏,杨奎斌,王海明,等.特殊浸水下桩基负摩阻力试验研究[J].建筑科学与工程学报,2018,35(04):105.
 ZHU Yan-peng,YANG Kui-bin,WANG Hai-ming,et al.Test Research on Negative Skin Friction of Pile Foundation Under Special Immersion[J].Journal of Architecture and Civil Engineering,2018,35(02):105.
[5]王 欢,曹义康,任俊玺.干湿循环对粉砂土改良膨胀土裂隙及强度影响[J].建筑科学与工程学报,2022,39(05):213.[doi:10.19815/j.jace.2021.07006]
 WANG Huan,CAO Yi-kang,REN Jun-xi.Influence of Dry-wet Cycle on Crack and Strength of Silty Sand Improved Expansive Soil[J].Journal of Architecture and Civil Engineering,2022,39(02):213.[doi:10.19815/j.jace.2021.07006]

备注/Memo

备注/Memo:
收稿日期:2024-03-07
基金项目:国家自然科学基金项目(42277151); 中国国家铁路集团有限公司科技研究开发计划实验室基础研究项目(L2022G014)
通信作者:翁效林(1980-),男,工学博士,教授,博士生导师,E-mail:2107872661@qq.com。
Author resume: WENG Xiaolin(1980-), male, PhD, professor, E-mail: 2107872661@qq.com.
更新日期/Last Update: 2025-03-20