|本期目录/Table of Contents|

[1]孔 凡,穆拉提江·麦麦提,孙香红,等.装备碰撞调谐质量阻尼器的近海单桩风机疲劳损伤分析[J].建筑科学与工程学报,2025,42(03):48-57.[doi:10.19815/j.jace.2023.04047]
 KONG Fan,MULATIJIANG Maimaiti,SUN Xianghong,et al.Fatigue damage analysis of monopile offshore wind turbine equipped with pounding tuned mass damper[J].Journal of Architecture and Civil Engineering,2025,42(03):48-57.[doi:10.19815/j.jace.2023.04047]
点击复制

装备碰撞调谐质量阻尼器的近海单桩风机疲劳损伤分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年03期
页码:
48-57
栏目:
建筑结构
出版日期:
2025-05-30

文章信息/Info

Title:
Fatigue damage analysis of monopile offshore wind turbine equipped with pounding tuned mass damper
文章编号:
1673-2049(2025)03-0048-10
作者:
孔 凡1,2,穆拉提江·麦麦提1,孙香红3,夏红兵4,王 恒5
(1. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070; 2. 合肥工业大学 土木与水利工程学院,安徽 合肥 230009; 3. 长安大学 建筑工程学院,陕西 西安 710061; 4. 中信建筑设计研究总院有限公司,湖北 武汉 430014; 5. 华中科技大学 土木与水利工程学院,湖北 武汉 430074)
Author(s):
KONG Fan1,2, MULATIJIANG Maimaiti1, SUN Xianghong3, XIA Hongbing4, WANG Heng5
关键词:
近海单桩风机 碰撞调谐质量阻尼器 风浪联合作用 疲劳损伤
Keywords:
monopile offshore wind turbine PTMD combined wind and wave action fatigue damage
分类号:
TU352
DOI:
10.19815/j.jace.2023.04047
文献标志码:
A
摘要:
为研究碰撞调谐质量阻尼器(PTMD)在风浪联合作用下对海上单桩风机疲劳损伤的控制效果,以美国国家可再生能源实验室(NREL)的5 MW基准单桩海上风机为研究对象,利用拉格朗日方程建立风浪联合作用下单桩风机-PTMD系统的运动方程。考虑Kaimal湍流谱模型和Jonswap波高谱,分别得到随机风速时程和波浪荷载时程,基于Palmgren-Miner线性疲劳累积损伤理论及雨流计数法,分析了单桩风机-PTMD系统的疲劳损伤。结果表明:最优碰撞参数以及调谐频率下的PTMD能够显著减轻风浪联合荷载作用下风机的疲劳损伤,PTMD质量块无需过大行程即可满足风机实际使用要求; 即使在失谐情况下,PTMD仍具有较好的减轻风机疲劳损伤的作用; 提出的PTMD技术具有很好的应用前景,可在海上风电场中广泛应用,提升海上单桩风机塔身的安全性和疲劳特性。
Abstract:
In order to investigate the control effect of pounding tuned mass damper(PTMD)on the fatigue damage of offshore monopile wind turbines under the combined action of wind and wave, the 5 MW benchmark monopile offshore wind turbine provided by the national renewable energy laboratory(NREL)in the United States was taken as the research object, and the Lagrange equation was used to establish the motion equation of the monopile wind turbine-PTMD system under the combined action of wind and wave. Considering the Kaimal turbulence spectrum model and the Jonswap wave height spectrum, the stochastic wind speed time history and the wave load time history were obtained respectively. Based on Palmgren-Miner linear fatigue cumulative damage theory and rain flow counting method, the fatigue damage of monopile wind turbines-PTMD system was analyzed. The results show that the PTMD, with optimal collision parameters and tuning frequency, can significantly reduce the fatigue damage induced by wind and wave loads, and the PTMD mass block can meet the practical use requirements of the wind turbines without excessive stroke. Even in the case of detuning, PTMD still has a good effect on reducing the fatigue damage of the wind turbine. The proposed PTMD technology has a good application prospect and can be widely used in offshore wind farms to improve the safety and fatigue characteristics of offshore monopile wind turbine tower.

参考文献/References:

[1] 彭丽华.考虑雨流计数的频域疲劳计算方法[D].武汉:武汉理工大学,2018.
PENG Lihua. Frequency domain fatigue calculation method considering rain flow counting[D]. Wuhan: Wuhan University of Technology, 2018.
[2]Guide for the fatigue assessment of offshore structures: ABS 115[S]. New York: American Bureau of Ship, 2003.
[3]MOHAMMADI S F, GALGOUL N S, STAROSSEK U, et al. An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure[J]. Marine Structures, 2016, 49: 97-115.
[4]TUNNA J M. Fatigue life prediction for Gaussian random loads at the design stage[J]. Fatigue & Fracture of Engineering Materials & Structures, 1986, 9(3): 169-184.
[5]BENASCIUTTI D, TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8): 867-877.
[6]DIRLIK T. Application of computers in fatigue analysis[D]. Coventry: University of Warwick, 1985.
[7]PARK J B, CHOUNG J, KIM K S. A new fatigue prediction model for marine structures subject to wide band stress process[J]. Ocean Engineering, 2014, 76: 144-151.
[8]JIA J B. An efficient nonlinear dynamic approach for calculating wave induced fatigue damage of offshore structures and its industrial applications for lifetime extension[J]. Applied Ocean Research, 2008, 30(3): 189-198.
[9]KVITTEM M I, MOAN T. Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine[J]. Marine Structures, 2015, 40: 38-59.
[10]赵俭斌,席义博,王振宇.海上风机单桩基础疲劳损伤计算方法[J].浙江大学学报(工学版),2019,53(9):1711-1719.
ZHAO Jianbin, XI Yibo, WANG Zhenyu. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(9): 1711-1719.
[11]李宏男,阎 石.中国结构控制的研究与应用[J].地震工程与工程振动,1999(1):107-112.
LI Hongnan, YAN Shi. State-of-the-art review: researches and applications of structural control in China[J]. Earthquake Engineering and Engineering Vibration, 1999(1): 107-112.
[12]JANKOWSKI R, WILDE K, FUJINO Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(5): 487-502.
[13]ANAGNOSTOPOULOS S A, SPILIOPOULOS K V. An investigation of earthquake induced pounding between adjacent buildings[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(4): 289-302.
[14]WOLF J P, SKRIKERUD P E. Mutual pounding of adjacent structures during earthquakes[J]. Nuclear Engineering and Design, 1980, 57(2): 253-275.
[15]CHAU K T, WEI X X. Pounding of structures modeled as non-linear impacts of two oscillators[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(5): 633-651.
[16]PANTELIDES C P, MA X. Linear and nonlinear pounding of structural systems[J]. Computers & Structures, 1998, 66(1): 79-92.
[17]JING H S, YOUNG M. Impact interactions between two vibration systems under random excitation[J]. Earthquake Engineering & Structural Dynamics, 1991, 20(7): 667-681.
[18]JANKOWSKI R. Non-linear viscoelastic modelling of earthquake-induced structural pounding[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(6): 595-611.
[19]Wind turbines — part 1: design requirements for offshore wind turbines: IEC 61400-1(third edition)[S]. Geneva: IEC, 2005.
[20]Wind turbines — part 3: design requirements for offshore wind turbines: IEC 61400-3(first edition)[S]. Geneva: IEC, 2009.
[21]JONKMAN B J, KILCHER L. TurbSim user's guide: version 1.06.00[R]. Golden: National Renewable Energy Laboratory, 2001.
[22]HANSEN M. Aerodynamics of wind turbines[M]. 3rd ed. London: Taylor & Francis Group, 2015.
[23]SHINOZUKA M, DEODATIS G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews, 1991, 44(4): 191-204.
[24]MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
[25]MURAKAMI Y. The rainflow method in fatigue[M]. Oxford: Butterworth-Heinemann, 1992.
[26]孔 凡,夏红兵,孙 超,等.风浪联合作用下海上风力涡轮机的碰撞阻尼减振控制[J].振动与冲击,2021,40(3):19-27.
KONG Fan, XIA Hongbing, SUN Chao, et al. Pounding tuned mass damper for vibration control of offshore wind turbine subjected to combined wind and wave excitations[J]. Journal of Vibration and Shock, 2021, 40(3): 19-27.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-04-11
基金项目:国家自然科学基金项目(52078399)
作者简介:孔 凡(1984-),男,工学博士,教授,博士生导师,E-mail:kongfan@hfut.edu.cn。
通信作者:王 恒(1991-),男,工学博士研究生,E-mail:wangh1993@hust.edu.cn。
Author resumes: KONG Fan(1984-), male, PhD, professor, E-mail: kongfan@hfut.edu.cn; WANG Heng(1991-), male, doctoral student, E-mail: wangh1993@hust.edu.cn.
更新日期/Last Update: 2025-06-01