|本期目录/Table of Contents|

[1]吴波,乔长江.约束混凝土梁的升降温全过程轴力分析[J].建筑科学与工程学报,2010,27(01):12-20.
 WU Bo,QIAO Chang-jiang.Axial Force Analysis of Restrained Concrete Beams During Heating and Cooling Phases[J].Journal of Architecture and Civil Engineering,2010,27(01):12-20.
点击复制

约束混凝土梁的升降温全过程轴力分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
27卷
期数:
2010年01期
页码:
12-20
栏目:
出版日期:
2010-03-20

文章信息/Info

Title:
Axial Force Analysis of Restrained Concrete Beams During Heating and Cooling Phases
作者:
吴波乔长江
华南理工大学 亚热带建筑科学国家重点实验室,广东 广州 510640
Author(s):
WU Bo QIAO Chang-jiang
State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, Guangdong, China
关键词:
钢筋混凝土 约束梁 轴力 升温段 降温段
Keywords:
reinforced concrete restrained beam axial force heating phase cooling phase
分类号:
TU375
DOI:
-
文献标志码:
A
摘要:
利用SAFIR程序开展了约束混凝土梁的升降温全过程轴力分析,考察了轴向约束刚度比、截面宽度、全截面配筋率、升温时间等参数对ISO 834标准升降温作用下约束混凝土梁的轴力影响规律,并与单调升温时的相应规律进行了对比; 通过对288种工况的计算分析,给出了该类构件轴力比的实用计算方法。研究结果表明:对于轴向和转动约束梁,无论是单调升温还是先升温后降温,轴力比总体都呈现出先逐渐增大而后平缓变化,然后以较大速率降低的趋势,主要区别在于先升温后降温时平缓段的持续时间比单调升温时更长; 对于先升温后降温的轴向和转动约束梁,转动约束刚度比、截面高度、梁跨度和荷载比对轴力比影响很小,而轴向约束刚度比和全截面配筋率越大或截面宽度越小,轴力比峰值就越大; 考虑到实际工程情况,可近似忽略混凝土保护层厚度变化对轴向和转动约束梁轴力比的影响。
Abstract:
Using the program SAFIR, the influences of some parameters, including axial restraint stiffness ratio, section width, reinforcement ratio, and heating time, etc. on axial forces in restrained concrete beams exposed to ISO 834 standard fire with cooling phase, which compared with those fire without cooling phase were analyzed. Based on the simulation results of 288 cases, a practical calculation method for axial forces in restrained concrete beams subjected to fire with cooling phase was proposed. The results show that for axially-and-rotationally restrained beams in fire with or without cooling phase, the axial force ratio increases gradually first, then varies gently, and finally decreases quickly, but the gentle variation stage related to fire with cooling phase is longer than that without cooling phase; the influences of rotational restraint stiffness ratio, section height, beam span and load ratio on the axial force ratio of axially-and-rotationally restrained beams subjected to fire with cooling phase are limited, while the peak value of the axial force ratio increases with increasing of the axial restraint stiffness ratio and reinforcement ratio or with decreasing of section width; and the effect of concrete cover on the axial force ratio of axially-and-rotationally restrained beams can be neglected approximately.

参考文献/References:

[1] DWAIKAT M B,KODUR V K R.A Numerical Approach for Modeling the Fire Induced Restraint Effects in Reinforced Concrete Beams[J].Fire Safety Journal,2008,43(4):291-307.
[2]WU B,LU J Z.A Numerical Study of the Behaviour of Restrained RC Beams at Elevated Temperatures[J].Fire Safety Journal,2009,44(4):522-531.
[3]卢锦钟,黄晓吉.梁端约束对钢筋混凝土梁耐火性能的影响[J].华侨大学学报:自然科学版,2008,29(4):593-599. LU Jin-zhong,HUANG Xiao-ji.Effect of Restraint Stiffness on the Fire Resistance of Reinforced Concrete Beam[J].Journal of Huaqiao University:Nat-ural Science,2008,29(4):593-599.
[4]ELLINGWOOD B,LIN T D.Flexure and Shear Behavior of Concrete Beams During Fires[J].Journal of Structural Engineering,1991,117(2):440-458.
[5]CAI J,BURGESS I,PLANK R.A Generalised Steel/Reinforced Concrete Beam-column Element Model for Fire Conditions[J].Engineering Structures,2003,25(6):817-833.
[6]BRATINA S,SAJE M,PLANINC I.The Effects of Different Strain Contributions on the Response of RC Beams in Fire[J].Engineering Structures,2007,29(3):418-430.
[7]乔长江.具有端部约束的混凝土构件升降温全过程耐火性研究[D].广州:华南理工大学,2009. QIAO Chang-jiang.Fire Resistance of Reinforced Concrete Restrained Members During Heating and Cooling Phases[D].Guangzhou:South China University of Technology,2009.
[8]EN 1993-1-2:2005,Eurocode 3.Design of Steel Structures,Part 1-2:General Rules-Structural Fire Design[S].
[9]EN 1992-1-2:2004,Eurocode 2.Design of Concrete Structures,Part 1-2:General Rules-Structural Fire Design[S].
[10]WELCH S,MILES S D,KUMAR S,et al.FIRESTRUC—Integrating Advanced Three-dimensional Modeling Methodologies for Predicting Thermo-mechanical Behavior of Steel and Composite Structures Subjected to Natural Fires[R].Belgium:BRE,2006.
[11]FRANSSEN J M.Thermal Elongation of Concrete During Heating Up to 700 ℃ and Cooling[R].Belgium:University of Liege,1993.
[12]EN 1994-1-2:2005,Eurocode 4.Design of Composite Steel and Concrete Structures,Part 1-2:General Rules-Structural Fire Design[S].

相似文献/References:

[1]吴方伯,李 钧,邓利斌,等.大尺寸钢筋混凝土密肋薄腹梁抗剪性能试验[J].建筑科学与工程学报,2014,31(04):1.
 WU Fang-bo,LI Jun,DENG Li-bin,et al.Experiment on Shear Behavior of Largesize Reinforced Concrete Multiribbed Thin Web Beams[J].Journal of Architecture and Civil Engineering,2014,31(01):1.
[2]鲍文博,付亮华,陆海燕,等.钢混框剪高层结构地震能量分布及耗散研究[J].建筑科学与工程学报,2015,32(03):38.
 BAO Wen-bo,FU Liang-hua,LU Hai-yan,et al.Research on Seismic Energy Distribution and Dissipation of Reinforced Concrete Framewall Highrise Structure[J].Journal of Architecture and Civil Engineering,2015,32(01):38.
[3]延永东,姚昌建,刘荣桂,等.氯盐环境下开裂混凝土耐久性研究进展[J].建筑科学与工程学报,2015,32(04):21.
 YAN Yong-dong,YAO Chang-jian,LIU Rong-gui,et al.Research Progress on Durability of Cracked Concrete Under Chloride Environment[J].Journal of Architecture and Civil Engineering,2015,32(01):21.
[4]林 峰,黎艳翔,董 羽.CFRP加固钢筋混凝土直剪承载力试验[J].建筑科学与工程学报,2015,32(06):43.
 LIN Feng,LI Yan-xiang,DONG Yu.Experiment on Shear Transfer Capacity of Reinforced Concrete Strengthened with CFRP[J].Journal of Architecture and Civil Engineering,2015,32(01):43.
[5]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析[J].建筑科学与工程学报,2010,27(01):60.
 MA Zhi-lin,SHI Qing-xuan,WANG Wei.Elasto-plastic Analysis of Reinforced Concrete Coupled Shear Walls[J].Journal of Architecture and Civil Engineering,2010,27(01):60.
[6]常莹莹,贡金鑫.钢筋混凝土受弯构件的延性及弯矩重分布[J].建筑科学与工程学报,2010,27(02):38.
 CHANG Ying-ying,GONG Jin-xin.Ductility and Moment Redistribution of Reinforced Concrete Flexural Members[J].Journal of Architecture and Civil Engineering,2010,27(01):38.
[7]潘元,刘伯权,邢国华,等.基于破坏准则的钢筋混凝土结构抗倒塌研究进展[J].建筑科学与工程学报,2010,27(02):51.
 PAN Yuan,LIU Bo-quan,XING Guo-hua,et al.Research Progress of Seismic Collapse Resistance of Reinforced Concrete Structures Based on Damage Criteria[J].Journal of Architecture and Civil Engineering,2010,27(01):51.
[8]屈文俊,方瑾,周国全.混凝土受弯构件受拉钢筋最小配筋率[J].建筑科学与工程学报,2011,28(01):6.
 QU Wen-jun,FANG Jin,ZHOU Guo-quan.Minimum Reinforcement Ratio of Tensile Reinforcement for Concrete Flexural Members[J].Journal of Architecture and Civil Engineering,2011,28(01):6.
[9]张云鹏,刁波,叶英华.基于Timoshenko与高阶剪切变形梁理论的RC梁极限承载力分析[J].建筑科学与工程学报,2011,28(03):67.
 ZHANG Yun-peng,DIAO Bo,YE Ying-hua.Ultimate Bearing Capacities of RC Beam Based on Timoshenko and Higher-order Shear Deformation Beam Theories[J].Journal of Architecture and Civil Engineering,2011,28(01):67.
[10]张园园,贡金鑫.混凝土结构钢筋构造对比分析[J].建筑科学与工程学报,2012,29(01):70.
 ZHANG Yuan-yuan,GONG Jin-xin.Comparative Analysis of Rebar Detailing for RC Structures[J].Journal of Architecture and Civil Engineering,2012,29(01):70.

备注/Memo

备注/Memo:
收稿日期:2009-12-05
基金项目:“十一五”国家科技支撑计划项目(2006BAJ03A03-12); 国家自然科学基金重点项目(50738005); 教育部科学技术研究重点项目(108106); 教育部高等学校博士学科点专项科研基金项目(20060561014); 亚热带建筑科学国家重点实验室重点研究项目(2008ZA10)
作者简介:吴 波(1968-),男,重庆市人,研究员,博士研究生导师,工学博士,E-mail:bowu@scut.edu.cn。
更新日期/Last Update: 2010-03-20