|本期目录/Table of Contents|

[1]刘荣桂,席宜超,鲁开明,等.上部结构刚度对桩基承台加防水板的影响[J].建筑科学与工程学报,2019,36(02):39-47.
 LIU Rong-gui,XI Yi-chao,LU Kai-ming,et al.Influence of Superstructure Stiffness on Pile Foundation Cap with Waterproof Slab[J].Journal of Architecture and Civil Engineering,2019,36(02):39-47.
点击复制

上部结构刚度对桩基承台加防水板的影响(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年02期
页码:
39-47
栏目:
出版日期:
2019-03-26

文章信息/Info

Title:
Influence of Superstructure Stiffness on Pile Foundation Cap with Waterproof Slab
文章编号:
1673-2049(2019)02-0039-09
作者:
刘荣桂1席宜超1鲁开明2逯绍慧2
(1. 江苏大学 土木工程与力学学院,江苏 镇江 212013; 2. 南京建工集团有限公司,江苏 南京 210012)
Author(s):
LIU Rong-gui1 XI Yi-chao1 LU Kai-ming2 LU Shao-hui2
(1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, Jiangsu, China; 2. Nanjing Construction Industry Group Co., Ltd., Nanjing 210012, Jiangsu, China)
关键词:
共同作用 上部结构刚度 桩基 承台 防水板 逐层施工
Keywords:
coaction superstructure stiffness pile foundation cap waterproof slab layer-by-layer construction
分类号:
TU473
DOI:
-
文献标志码:
A
摘要:
基于弹性理论和变形协调关系推导了桩基承台加防水板时的桩土应力估算公式,采用ABAQUS建立了上部结构-桩基承台加防水板-地基共同作用模型和仅考虑桩基承台加防水板-地基共同作用模型,对比分析了上部结构刚度对地基反力、桩顶反力、基础底板内力与变形的影响,计算了不同位置处桩顶实际反力与设计反力的比值。利用“生死单元”技术模拟施工过程,研究了荷载分配比、单位荷载差异沉降、底板弯矩等随施工层数的变化规律。结果表明:荷载分配与桩-土刚度比、持力层硬度、柱距、防水板厚度等因素有关; 防水板底土能承担20%左右的上部结构荷载,考虑上部结构刚度后板底反力分布更加均匀,防水板的“架越作用”不明显,角桩和边桩增荷而中部桩卸荷,基础底板差异沉降显著减小,承台最大弯矩截面由墙边处变为跨中处; 逐层施工中桩分担的荷载逐渐增加,而防水板底土和承台底土分担的荷载逐渐减小,并且这种增加或减小的趋势逐渐减缓; 上部结构刚度约束基础差异沉降的能力是有限的,考虑逐层施工后承台最大弯矩增加,防水板柱下板带最大弯矩减小,跨中板带弯矩始终很小且几乎无变化。
Abstract:
Based on the elastic theory and the deformation compatibility relationship, the pile-soil stress estimation formula for pile foundation cap with waterproof slab was deduced. The coaction model of superstructure-pile foundation cap with waterproof slab, and the coaction model of only pile foundation cap with waterproof slab were established by ABAQUS. The influences of superstructure stiffness on the foundation reaction force, pile-top reaction force and internal force and deformation of foundation floor were compared and analyzed. The ratios of actual reaction force to design reaction force at different locations were calculated. The construction process was simulated by using the “life and death element” technology, and the variation law of load distribution ratio, differential settlement of unit load and bottom bending moment with construction story were studied. The results show that the load distribution is related to pile-soil stiffness ratio, hardness of bearing layer, column spacing and thickness of waterproof slab, etc. The bottom soil of waterproof slab can bear about 20% of the load of superstructure. After considering the superstructure stiffness, the distribution of bottom reaction is more uniform, the overhanging effect of waterproof slab is not obvious, and corner piles and side piles increase the load, while the middle piles unload,the differential settlement of bottom decreases significantly, and the maximum bending moment section of the cap changes from the side of wall to the middle of span. The loads of pile increase gradually,while the loads of bottom soil for waterproof slab and cap decrease gradually in layer-by-layer construction, and the trends of increasing or decreasing gradually slow down. The ability of the superstructure stiffness to restrain the differential settlement of foundation is limit, and the maximum bending moment of cap increases after considering layer-by-layer construction, the maximum bending moment of waterproof slab column decreases, and the bending moment of mid-span slab is always small and almost unchanged.

参考文献/References:

References:
[1] 吴海胜,阚 明,张胜潭.高层建筑基础构造防水底板设计[J].建筑结构学报,2009,30(增1):233-236.
WU Hai-sheng,KAN Ming,ZHANG Sheng-tan.Constructional Design of Flashing in High-rise Building[J].Journal of Building Structures,2009,30(S1):233-236.
[2]姚舒康,杨 丽,李亚楠,等.深基础防水板应用探讨[J].工业建筑,2012,42(增):485-489.
YAO Shu-kang,YANG Li,LI Ya-nan,et al.Discussion on Application of Deep Foundation Waterproof Board[J].Industrial Construction,2012,42(S):485-489.
[3]杜 鹏.防水板受力分析及设计[J].建筑结构,2016,46(16):105-107.
DU Peng.Mechanical Analysis and Design of Waterproof Plate[J].Building Structure,2016,46(16):105-107.
[4]刘 武,李 娜,谭光宇,等.独立基础加防水板的设计[J].建筑结构,2016,46(增2):520-523.
LIU Wu,LI Na,TAN Guang-yu,et al.Design of the Independent Foundation with Water-proof Slab[J].Building Structure,2016,46(S2):520-523.
[5]李 纯,朱浮声.构造板独立基础地基反力测试[J].辽宁工程技术大学学报,2006,25(2):220-222.
LI Chun,ZHU Fu-sheng.Testing Spread Foundation with Concrete Slab[J].Journal of Liaoning Technical University,2006,25(2):220-222.
[6]吴春萍,白东丽.独立基础加防水板的地基反力分配分析[J].工程与建设,2008,22(3):371-373.
WU Chun-ping,BAI Dong-li.Analysis of Foundation Reaction Distribution of Independent Foundation with Waterproof Board[J].Engineering and Construction,2008,22(3):371-373.
[7]武崇福,任顺利.构造板独立基础地基反力的数值模拟[J].辽宁工程技术大学学报:自然科学版,2010,29(3):427-430.
WU Chong-fu,REN Shun-li.Numerical Simulation on Ground Back Pressure of Spread Foundation with Concrete Slab[J].Journal of Liaoning Technical University:Natural Science,2010,29(3):427-430.
[8]王小平.地基基础与上部结构的共同作用机理分析[D].西安:西安工业大学,2016.
WANG Xiao-ping.Common Mechanism of Action of Foundation and Superstructure Analysis[D].Xi'an:Xi'an Technological University,2016.
[9]SERT S,KILIC A N.Numerical Investigation of Different Superstructure Loading Type Effects in Mat Foundations[J].International Journal of Civil Engineering,2016,14(3):171-180.
[10]FAROUK H,FAROUK M.Soil,Foundation,and Superstructure Interaction for Plane Two-bay Frames[J].International Journal of Geomechanics,2016,16(1):B4014003.
[11]GB 50009—2012,建筑结构荷载规范[S].
GB 50009—2012,Load Code for the Design of Building Structures[S].
[12]JGJ 94—2008,建筑桩基技术规范[S].
JGJ 94—2008,Technical Code for Building Pile Foundations[S].
[13]张俊飞,顾克秋,付 帅.基于Abaqus的体壳单元组合建模研究[J].机械制造与自动化,2014(3):102-104,108.
ZHANG Jun-fei,GU Ke-qiu,FU Shuai.Study of Modelling on Combination of Solid and Thin-shell Elements Based on Abaqus[J].Machine Building & Automation,2014(3):102-104,108.
[14]刘 英,于立宏.Mohr-Coulomb屈服准则在岩土工程中的应用[J].世界地质,2010,29(4):633-639.
LIU Ying,YU Li-hong.Application of Mohr-Coulomb Yield Criterion in Geo-technical Engineering[J].Global Geology,2010,29(4):633-639.
[15]姚仰平,张丙印,朱俊高.土的基本特性、本构关系及数值模拟研究综述[J].土木工程学报,2012,45(3):127-150.
YAO Yang-ping,ZHANG Bing-yin,ZHU Jun-gao.Behaviors,Constitutive Models and Numerical Simulation of Soils[J].China Civil Engineering Journal,2012,45(3):127-150.
[16]费 康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2013.
FEI Kang,ZHANG Jian-wei.Application of ABAQUS in Geotechnical Engineering[M].Beijing:China Water & Power Press,2013.
[17]王成华,占 川.土与结构界面力学特性研究综述[J].建筑技术,2013,44(6):486-490.
WANG Cheng-hua,ZHAN Chuan.State-of-the-art:Mechanical Properties of Interface Between Soils and Structures[J].Architecture Technology,2013,44(6):486-490.
[18]杨金尤,雷金波,邹永强,等.基于ABAQUS的带帽桩复合地基初始地应力平衡方法浅析[J].南昌航空大学学报:自然科学版,2017,31(4):73-78.
YANG Jin-you,LEI Jin-bo,ZOU Yong-qiang,et al.Preliminary Analysis on Initial Stress Balance Method of Composite Foundation with Cap Pile Based on ABAQUS[J].Journal of Nanchang Hangkong University:Natural Science,2017,31(4):73-78.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-08-13
基金项目:江苏省建设系统科技项目(2016ZD102); 国家自然科学基金项目(51508234)
作者简介:刘荣桂(1957-),男,江苏江都人,教授,博士研究生导师,工学博士,E-mail:liurg@ujs.edu.cn。
更新日期/Last Update: 2019-03-27