|本期目录/Table of Contents|

[1]涂 俊,王玉银,刘永健,等.大跨钢箱拱-波形钢-桁架组合梁拱桥抗风性能[J].建筑科学与工程学报,2019,36(04):47-54.
 TU Jun,WANG Yu-yin,LIU Yong-jian,et al.Wind Resistance of Large-span Steel Box Arch-corrugated Steel-truss Composite Beam Arch Bridge[J].Journal of Architecture and Civil Engineering,2019,36(04):47-54.
点击复制

大跨钢箱拱-波形钢-桁架组合梁拱桥抗风性能(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年04期
页码:
47-54
栏目:
出版日期:
2019-07-26

文章信息/Info

Title:
Wind Resistance of Large-span Steel Box Arch-corrugated Steel-truss Composite Beam Arch Bridge
文章编号:
1673-2049(2019)04-0047-08
作者:
涂 俊1王玉银23刘永健4刘昌永23
(1. 深圳市市政设计研究院有限公司,广东 深圳 518029; 2. 哈尔滨工业大学 结构工程灾变与控制教育部重点实验室,黑龙江 哈尔滨 150090; 3. 哈尔滨工业大学 土木工程智能防灾减灾工业和信息化部重点实验室,黑龙江 哈尔滨 150090; 4. 长安大学 公路学院,陕西 西安 710064)
Author(s):
TU Jun1 WANG Yu-yin23 LIU Yong-jian4 LIU Chang-yong23
1.Shenzhen Municipal Design&Research Institute Co,Ltd.,Shenzhen 518029,Guangdong,China; 2.Key Laboratory of Structures Dynamic Behavior and Control of Ministry of Education,Harbin Institute of Technology,Harbin 150090,Heilongjiang,China;3.Key Laboratory of Smart Prevention and Mitigation of CivilEngineering Disasters of Ministry of Industry and Information Technology,Harbin Institute of Technology,Harbin 150090,Heilongjiang,China;
关键词:
拱桥 抗风 全桥气动弹性 风洞试验 加速度
Keywords:
arch bridge wind resistance full bridge aeroelastic wind tunnel test acceleration
分类号:
TU398
DOI:
-
文献标志码:
A
摘要:
为研究深圳后海公园跨湖大桥采用的钢箱拱-波形钢-桁架组合梁拱桥的抗风性能,在保证弗劳德数、柯西数和密度等相似的前提下,按照1:100的比例设计制作了全桥气弹性试验模型,拱肋和主梁采用钢骨架实现刚度相似,通过外包ABS外衣实现几何相似,通过配重实现质量相似,用定制弹簧模拟吊杆的刚度,采用有限元计算验证了试验模型与实桥动力特性的吻合程度。然后进行了C类地貌及均匀流场中全桥气弹性模型风洞试验,实测了不同风偏角(0°,30°,60°,90°)和不同风攻角(-3°,0°,3°)下拱肋和主梁的加速度响应。结果表明:风偏角对拱肋和主梁加速度影响显著,风偏角越大,加速度响应越低; 风攻角对拱肋和主梁的加速度响应影响不大; 湍流未见涡激共振现象,而均匀流场时拱肋和主梁出现了涡激共振; 试验风速超过《公路桥梁抗风设计规范》计算得到的颤振临界风速,未出现颤振。
Abstract:
In order to study the wind resistance performance of the steel box arch-corrugated steel-truss composite beam arch bridge used in the Shenzhen Houhai Park cross-lake bridge, a full bridge aeroelastic model was designed and fabricated according to the ratio of 1:100 on the premise of ensuring similar Froude number, Cauchy number and density to the real bridge. The arch rib and primary beam were fabricated using steel to achieve similar stiffness. ABS garment was placed on outer of the arch rib and primary beam to ensure geometric similarity. Weight was added to ensure mass similarity of the arch rib and primary beam. The stiffness of hanger was simulated by the customized spring. The agreement of dynamic characteristics between the test model and the real bridge was verified by finite element calculation. The wind tunnel test of the full bridge aeroelastic model in terrain C and uniform flow filed was conducted to measure the acceleration responses of the arch rib and primary beam under different wind yaw angles(0°, 30°, 60°, 90°)and different wind attack angles(-3°, 0°, 3°). The results show that the wind yaw angle has a significant influence on the acceleration of the arch rib and primary beam. The larger the yaw angle is, the lower the acceleration response is. The wind attack angle has an insignificant influence on the acceleration response of the arch rib and primary beam. The vortex induced vibration of the arch rib and primary beam is not observed in the turbulent flow field, while it occurs in the uniform flow field. No flutter occurs when the test wind speed exceeds the flutter critical wind speed calculated by the code of Wind-resistant Deisgn Specification for Highway Bridges.

参考文献/References:

[1] 项海帆,葛耀君,朱乐东,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
XIANG Hai-fan,GE Yao-jun,ZHU Le-dong,et al.Modern Theory and Practice on Bridge Wind Resistance[M].Beijing:China Communications Press,2005.
[2]葛耀君.大跨度拱式桥抗风[M].北京:人民交通出版社股份有限公司,2014.
GE Yao-jun.Wind Resistance of Long Span arch Bridges[M].Beijing:China Communications Press Co.,Ltd.,2014.
[3]黄 超.大跨度拱桥空气动力特性风洞试验研究[D].重庆:重庆大学,2005.
HUANG Chao.Wind Tunnel Test Research on Aerodynamic Characteristics of Long Span Arch Bridge[D].Chongqing:Chongqing University,2005.
[4]阎卫国.超窄悬索桥抗风稳定性研究及风振响应控制[D].武汉:武汉理工大学,2008.
YAN Wei-guo.Research on Wind-resistant Stability and Vibration Control Measures of Narrow Width Suspension Bridge[D].Wuhan:Wuhan University of Technology,2008.
[5]徐洪涛.山区峡谷风特性参数及大跨度桁梁桥风致振动研究[D].成都:西南交通大学,2009.
XU Hong-tao.Research of Wind Characteristic Parameters and Wind-induced Vibration of Long Span Bridge with Truss Girder in Mountainous Area[D].Chengdu:Southwest Jiaotong University,2009.
[6]王承启.大跨度钢桁架拱桥风振研究[D].重庆:重庆大学,2011.
WANG Cheng-qi.Investigation on Wind-induced Vibration of Long-span Steel Trussed Arch Bridges[D].Chongqing:Chongqing University,2011.
[7]DIANA G,FIAMMENGHI G,BELLOLI M,et al.Wind Tunnel Tests and Numerical Approach for Long Span Bridges:The Messina Bridge[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,122:38-49.
[8]DIANA G,YAMASAKI Y,LARSEN A,et al.Construction Stages of the Long Span Suspension Izmit Bay Bridge:Wind Tunnel Test Assessment[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,123:300-310.
[9]LARSEN A,LAROSE G L.Dynamic Wind Effects on Suspension and Cable-stayed Bridges[J].Journal of Sound and Vibration,2015,334:2-28.
[10]CHEYNET E,JAKOBSEN J B,SNAEBJORNSSON J.Buffeting Response of a Suspension Bridge in Complex Terrain[J].Engineering Structures,2016,128:474-487.
[11]NUNEZ G J Z,LOREDO-SOUZA A M,ROCHA M M,et al.Aerodynamic Behavior of a Cable-stayed Bridge Section Composed by Inclined Parallel Decks[J].Journal of Wind Engineering and Industrial Aerodynamics,2018,173:156-170.
[12]HUI M C H,LARSEN A,XIANG H F.Wind Turbulence Characteristics Study at the Stonecutters Bridge Site:Part Ⅰ — Mean Wind and Turbulence Intensities[J].Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):22-36.
[13]HUI M C H,LARSEN A,XIANG H F.Wind Turbulence Characteristics Study at the Stonecutters Bridge Site:Part Ⅱ:Wind Power Spectra,Integral Length Scales and Coherences[J].Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):48-59.
[14]BULJAC A,KOZMAR H,POSPISIL S,et al.Aerodynamic and Aeroelastic Characteristics of Typical Bridge Decks Equipped with Wind Barriers at the Windward Bridge-deck Edge[J].Engineering Structures,2017,137:310-322.
[15]PERMATA R,ANDIKA M G,HAKIM N,et al.Wind Resistant Design of Ngarai Sianok Bridge in Bukittinggi,West Sumatera-Indonesia[J].Procedia Engineering,2017,171:1214-1221.
[16]KIM Y M,KWAY Y H,CHOI M S,et al.Wind Engineering on the New Millennium Bridge in South Korea[J].Procedia Engineering,2011,14:1472-1479.
[17]MA C,DUAN Q,LI Q,et al.Aerodynamic Characteristics of a Long-span Cable-stayed Bridge Under Construction[J].Engineering Structures,2019,184:232-246.
[18]白 桦,李 宇,李加武,等.钢桁架悬索桥颤振稳定性能研究[J].振动与冲击,2013,32(4):90-95.
BAI Hua,LI Yu,LI Jia-wu,et al.Flutter Stability of a Steel Truss Girder Suspension Bridge[J].Journal of Vibration and Shock,2013,32(4):90-95.
[19]王 凯,廖海黎,刘 君.山区峡谷大跨钢桁梁桥抗风特性试验研究[J].振动与冲击,2014,33(19):169-174.
WANG Kai,LIAO Hai-li,LIU Jun.Wind Resistance Tests for Long-span Steel Truss Bridges Across Gorges of Mountainous Area[J].Journal of Vibration and Shock,2014,33(19):169-174.

相似文献/References:

[1]孙 昊,庞浩然,张 超,等.垂直提升开启式拱桥动力特性分析[J].建筑科学与工程学报,2018,35(01):86.
 SUN Hao,PANG Hao-ran,ZHANG Chao,et al.Dynamic Characteristic Analysis of Vertical Lift Bascule Arch Bridge[J].Journal of Architecture and Civil Engineering,2018,35(04):86.

备注/Memo

备注/Memo:
收稿日期:2019-05-01
基金项目:国家重点研发计划项目(2016YFC0701202)
作者简介:涂 俊(1984-),男,福建长汀人,高级工程师,E-mail:datujun@qq.com。
通信作者:王玉银(1975-),男,黑龙江逊克人,教授,博士研究生导师,工学博士,E-mail:wangyuyin@hit.edu.cn。
英文作者:4.School of Highway,Chang’an University,Xi’an 710064,Shaanxi,China
更新日期/Last Update: 2019-07-26