|本期目录/Table of Contents|

[1]李忠友,姚志华,胡 柏.基于能量耗散特征的脆性岩土材料三轴压缩损伤模型[J].建筑科学与工程学报,2019,36(04):80-86.
 LI Zhong-you,YAO Zhi-hua,HU Bai.Triaxial Compression Damage Model of Brittle Geotechnical Materials Based on Energy Dissipation Characteristics[J].Journal of Architecture and Civil Engineering,2019,36(04):80-86.
点击复制

基于能量耗散特征的脆性岩土材料三轴压缩损伤模型(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年04期
页码:
80-86
栏目:
出版日期:
2019-07-26

文章信息/Info

Title:
Triaxial Compression Damage Model of Brittle Geotechnical Materials Based on Energy Dissipation Characteristics
文章编号:
1673-2049(2019)04-0080-07
作者:
李忠友1姚志华2胡 柏3
(1. 中国人民解放军93055部队,辽宁 沈阳 110021; 2. 空军工程大学 机场建筑工程系,陕西 西安 710038; 3. 成都军区房地产管理局工程环境质量监督站,四川 成都 600041)
Author(s):
LI Zhong-you1 YAO Zhi-hua2 HU Bai3
(1. 93055 Troops of PLA,Shenyang 110021, Liaoning, China; 2. Department of Airfield and Building Engineering, Air Force Engineering University, Xi'an 710038, Shaanxi, China; 3. Engineering and Environment Quality Supervision Department of Real Estate Administration of Chengdu Military Command, Chengdu 600041, Sichuan, China)
关键词:
岩土材料 能量耗散 三轴压缩 损伤 本构模型
Keywords:
geotechnical material energy dissipation triaxial compression damage constitutive model
分类号:
TU452
DOI:
-
文献标志码:
A
摘要:
从材料变形破坏过程中能量耗散特征入手,视脆性岩土材料为仅有损伤耗能的脆弹性部分和仅有塑性流动耗能的理想弹塑性部分共同组成,建立了适用于三轴压缩等复杂应力状态的损伤本构模型。对于脆弹性部分,认为体积变形和剪切变形均会引起材料内部结构单元的断裂破坏而产生损伤,但二者损伤耗能机理不同,对材料的力学性能及强度影响也不同,因而从能量耗散的角度出发,分别定义了体积损伤变量和剪切损伤变量,并通过变形过程中的能量守恒原理建立了相应的增量型损伤演化方程,进一步揭示了脆性岩土材料在复杂应力状态下的损伤机理; 对于理想弹塑性部分,采用Mohr-Coulomb强度准则反映材料屈服强度。以三峡地下电站典型花岗岩为例,采用提出的损伤模型进行了数值计算。结果表明:该模型能够较好预测材料在三轴压缩过程中峰值强度、峰值应变及残余强度随围压的变化规律,反映材料随围压增大逐渐由脆性向塑性转变的特征,具有广泛的工程应用价值。
Abstract:
Starting from the characteristics of energy dissipation in the process of material deformation and failure, the brittle geotechnical material was considered to be a brittle elastic part with only damage energy dissipation and an ideal elastic-plastic part with only plastic flow energy dissipation. A damage constitutive model suitable to complex stress states such as triaxial compression was established. For the brittle elastic part, the research showed that both volume deformation and shear deformation could cause fracture damage of structural elements in materials, but the damage energy dissipation mechanisms were different, and they had different effects on mechanical properties and strength of materials. Therefore, from the point of view of energy dissipation, volume damage variable and shear damage variable were defined respectively. The incremental damage evolution equation was established based on the principle of energy conservation in deformation process. The damage mechanism of brittle geotechnical materials under complex stress state was further revealed. For the ideal elastic-plastic part, Mohr-Coulomb strength criterion was used to reflect the yield strength of materials. Taking the typical granite of Three Gorges underground power station as an example, the damage model presented was used for numerical calculation. The results show that the model can well predict the variation of peak strength, peak strain and residual strength with confining pressure during triaxial compression, and reflect the characteristics of material changing from brittleness to plasticity with increasing confining pressure. The model has wide application value in engineering.

参考文献/References:

[1] DOUGILL J W,LAU J C,BURT N J.Toward a Theoretical Model for Progressive Failure and Softening in Rock,Concrete and Similar Materials[J].Mechanics in Engineering,1976,102:333-355.
[2]杨殷豪,李忠友.基于能量特征的脆性岩土材料广义拉伸损伤模型[J].青岛科技大学学报:自然科学版,2017,38(增1):154-157,164.
YANG Yin-hao,LI Zhong-you.Generalized Tension Damage Model for Brittle Geotechnical Materials Based on Energy Distinction[J].Journal of Qingdao University of Science and Technology:Natural Science Edition,2017,38(S1):154-157,164.
[3]王 利,高 谦.基于损伤能量耗散的岩体块度分布预测[J].岩石力学与工程学报,2007,26(6):1202-1211.
WANG Li,GAO Qian.Fragmentation Distribution Prediction of Rock Based on Damage Energy Dissipation [J].Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1202-1211.
[4]MIKHALYUK A V,ZAKHAROV V V.Dissipation of Dynamic-loading Energy in Quasi-elastic Deformation Processes in Rocks[J].Journal of Applied Mechanics and Technical Physics,1997,38(2):312-318.
[5]杨永明,鞠 杨,陈佳亮,等.三轴应力下致密砂岩的裂纹发育特征与能量机制[J].岩石力学与工程学报,2014,33(4):691-698.
YANG Yong-ming,JU Yang,CHEN Jia-liang,et al.Cracks Development Features and Energy Mechanism of Dense Sandstone Subjected to Triaxial Stress[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(4):691-698.
[6]何明明,陈蕴生,韩铁林,等.不同应力路径下砂岩能耗特征的研究[J].岩石力学与工程学报,2015,34(增1):2632-2638.
HE Ming-ming,CHEN Yun-sheng,HAN Tie-lin,et al.Study of Energy Properties of Sandstone Under Different Loading Paths[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):2632-2638.
[7]RAMULU M,CHAKRABORTY A K,SITHARAM T G.Damage Assessment of Basaltic Rock Mass Due to Repeated Blasting in a Railway Tunnelling Project — A Case Study[J].Tunnelling and Underground Space Technology,2009,24(2):208-221.
[8]周 辉,孟凡震,张传庆,等.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报,2014,33(6):1114-1122.
ZHOU Hui,MENG Fan-zhen,ZHANG Chuan-qing,et al.Quantitative Evaluation of Rock Brittleness Based on Stress-strain Curve[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1114-1122.
[9]罗 曦,彭 刚,刘博文,等.用改进Najar能量法分析混凝土单轴受压损伤特性[J].水利水运工程学报,2016(5):103-108.
LUO Xi,PENG Gang,LIU Bo-wen,et al.Analysis of Damage Characteristics of Concrete Under Dynamic Uniaxial Compression Based on Improved Najar Energy Method[J].Hydro-science and Engineering,2016(5):103-108.
[10]龙渝川,侯鉴珊,王玉山.基于能量耗散的混凝土塑性-损伤模型[J].建筑结构学报,2017,38(9):147-153.
LONG Yu-chuan,HOU Jian-shan,WANG Yu-shan.A Plastic-damage Model of Concrete Based on Energy-loss Mechanism[J].Journal of Building Structures,2017,38(9):147-153.
[11]闫东明,林 皋.三向应力状态下混凝土强度和变形特性研究[J].中国工程科学,2007,9(6):64-70.
YAN Dong-ming,LIN Gao.Behavior of Concrete Under the Triaxial Compression [J].Engineering Science,2007,9(6):64-70.
[12]宋卫东,明世祥,王 欣,等.岩石压缩损伤破坏全过程试验研究[J].岩石力学与工程学报,2010,29(增2):4180-4187.
SONG Wei-dong,MING Shi-xiang,WANG Xin,et al.Experimental Study of Rock Compression-damage-failure Process[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(S2):4180-4187.
[13]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
YANG Sheng-qi,XU Wei-ya,SU Cheng-dong.Study on the Deformation Failure and Energy Properties of Marble Specimen Under Triaxial Compression[J].Engineering Mechanics,2007,24(1):136-142.
[14]黄 达,黄润秋,张永兴.三轴加卸载下花岗岩脆性破坏及应力跌落规律[J].土木建筑与环境工程,2011,33(2):1-6.
HUANG Da,HUANG Run-qiu,ZHANG Yong-xing.Characteristics of Brittle Failure and Stress Drop Under Triaxial Loading and Unloading [J].Journal of Civil,Architectural & Environmental Engineering,2011,33(2):1-6.
[15]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
CAI Mei-feng,HE Man-chao,LIU Dong-yan.Rock Mechanics and Engineering[M].Beijing:Science Press,2002.
[16]LI L C,TANG C A,LI G,et al.Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-stress-damage Model and a Parallel FEM Technique[J].Rock Mechanics and Rock Engineering,2012,45(5):801-818.
[17]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005,27(5):489-494.
SHEN Zhu-jiang,LIU En-long,CHEN Tie-lin.Generalized Stress-strain Relationship of Binary Medium Model for Geological Materials[J].Chinese Journal of Geotechnical Engineering,2005,27(5):489-494.
[18]LEMAITRE J.How to Use Damage Mechanics[J].Nuclear Engineering and Design,1984,80(2):233-245.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-09-13
基金项目:国家自然科学基金项目(51509257)
作者简介:李忠友(1983-),男,辽宁阜新人,工程师,工学博士,E-mail:sklzy2013@sina.com。
更新日期/Last Update: 2019-07-26