|本期目录/Table of Contents|

[1]许 震,罗小烨,卢 琪,等.整体式弯桥试设计研究[J].建筑科学与工程学报,2019,36(06):104-111.
 XU Zhen,LUO Xiao-ye,LU Qi,et al.Trial-design Study on Integral Curved Bridge[J].Journal of Architecture and Civil Engineering,2019,36(06):104-111.
点击复制

整体式弯桥试设计研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年06期
页码:
104-111
栏目:
出版日期:
2019-11-25

文章信息/Info

Title:
Trial-design Study on Integral Curved Bridge
文章编号:
1673-2049(2019)06-0104-08
作者:
许 震12罗小烨1卢 琪3林上顺4黄福云1陈宝春1
3. 浙江工业大学 建筑工程学院,浙江 杭州 310014; 4. 福建工程学院 土木工程学院,福建 福州 350118)
Author(s):
XU Zhen12 LUO Xiao-ye1 LU Qi3 LIN Shang-shun4 HUANG Fu-yun1 CHEN Bao-chun1
(1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China; 2. School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China; 3. College of Civil Engineering and Architecture, Zhejiang University of Technology,Hangzhou 310014, Zhejiang, China; 4. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, China)
关键词:
整体式弯桥 试设计 结构-土相互作用 抗震性能
Keywords:
integral curved bridge trial design structure-soil interaction seismic performance
分类号:
U443.31
DOI:
-
文献标志码:
A
摘要:
以某实桥为工程背景,进行整体式弯桥的试设计和设计验算。采用MIDAS/Civil2015有限元软件分别建立了原桥和整体式弯桥的3D有限元模型,后者考虑了台-土及桩-土相互作用。对比分析了两者在恒载、活载(汽车荷载)、温度荷载、混凝土收缩以及地震等荷载作用下的受力性能。结果表明:由于梁端固接和台后土压力等影响,恒载、活载、温度及混凝土收缩等荷载作用下,整体式弯桥梁端具有较大的负弯矩; 整体式弯桥在恒载作用下的主梁弯矩值较原桥均匀,而在活载作用下主梁弯矩值与原桥相近; 温度荷载对整体式弯桥的主梁内力影响最大,其次为混凝土收缩效应,在设计中应引起重视; 在恒载、活载作用下,整体式弯桥和原桥的主梁扭矩基本呈反对称分布,且恒载下的主梁边跨扭矩显著小于原桥,而在活载下两者的主梁扭矩相差不大,整体式弯桥表现出较优的抗扭性能; 此外,整体式弯桥的抗震性能明显优于原桥,可有效避免主梁在地震中的侧向偏位和落梁等现象,在高震区使用更具优势。
Abstract:
Based on a practical bridge, the trial design and design checking of integral curved bridge were carried on. The 3D finite element model of the original bridge and the trial-design bridge were built respectively by using MIDAS/Civil2015 software, and the latter one considered the pile-soil interaction and abutment-soil interaction. Then the mechanical performances of original bridge and integral curved bridge were analyzed and compared under dead load, live load(vehicle load), temperature load, concrete shrinkage and seismic load. The results show that the girder end has greater negative bending moments under dead load, live load, temperature load, concrete shrinkage and seismic load because of a fixed connection at the girder end and earth pressures behind abutment. Compared with the original bridge, the girder of the integral curved bridge has a relatively uniform bending moment distribution under dead load, but the effect of live load on bending moments of the girder is similar. The temperature load has a greatest influence on internal forces of girder of the integral curved bridge, and the second is concrete shrinkage, so they should be taken seriously in design. The torques of the girder of the original bridge and integral curved bridge are basically antisymmetric under dead load and live load, and the torques of girder on the end spans of the integral curved bridge are significantly smaller than the ones of the original bridge under dead load, but the torques of girder between the two are not much different under live load, so it can be known that the trial-design curved bridge has a better torsion performance than the original bridge. Besides, the seismic performance of the integral curved bridge is rather better than that of the original bridge, and it can effectively avoid the lateral movement and falling of the girder during earthquake action, so the integral curved bridge can be applied preferably in high seismic zones.

参考文献/References:

[1] 陈宝春,庄一舟,BRISEGHELLA B.无伸缩缝桥梁[M].北京:人民交通出版社,2013.
CHEN Bao-chun,ZHUANG Yi-zhou,BRISEGHELLA B.Jointless Bridge[M].Beijing:China Communications Press,2013.
[2]赵丽颖.独柱墩弯桥的抗倾覆、抗扭曲及其计算分析[J].特种结构,2013,30(4):64-68.
ZHAO Li-ying.Anti-overturning and Anti-torsion of Single-column Pier Curved Bridge and Calculation Analysis[J].Special Structures,2013,30(4):64-68.
[3]李广慧,余正武,王用中.曲线连续梁桥的病害与温度效应[J].公路交通科技,2008,25(1):58-63.
LI Guang-hui,YU Zheng-wu,WANG Yong-zhong.Diseases of Curved Continuous Bridge and Temperature Effect[J].Journal of Highway and Transportation Research and Development,2008,25(1):58-63.
[4]FAR N E,MALAKI S,BARTHIAN M.Design of Integral Abutment Bridges for Combined Thermal and Seismic Loads[J].Earthquakes and Structures,2015,9(2):415-430.
[5]洪锦祥.整体式桥台桥梁的简化计算模型与受力性能研究[D].福州:福州大学,2006.
HONG Jin-xiang.Research on Simplified Calculating Model and Loaded Behavior of Integral Abutment Bridges[D].Fuzhou:Fuzhou University,2006.
[6]宋 波,黄付堂,毕泽锋,等.连梁装置游间量设置对弯桥动力特性的影响[J].工程科学学报,2015,37(9):1230-1238.
SONG Bo,HUANG Fu-tang,BI Ze-feng,et al.Influence of Expansion Joint Setting on the Dynamic Characteristics of Curved Bridges with Unseating-prevention Devices[J].Chinese Journal of Engineering,2015,37(9):1230-1238.
[7]王伯惠.取消桥梁伸缩缝做法的新发展[C]//中国公路学会桥梁和结构工程学会.1991年桥梁学术讨论会论文集.北京:人民交通出版社,1991:90-96.
WANG Bo-hui.A New Development of Cancel Expansion Joint of Bridge[C]//Bridge and Structural Engineering Branch of China Highway and Transportation Society.1991 Symposium on Bridges.Beijing:China Communications Press,1991:90-96.
[8]彭大文,陈朝慰,洪锦祥.整体式桥台桥梁的桥台结点受力性能研究[J].中国公路学报,2005,18(1):46-50.
PENG Da-wen,CHEN Chao-wei,HONG Jin-xiang.Study of Loaded Property of Abutment Node of Integral Abutment Bridges[J].China Journal of Highway and Transport,2005,18(1):46-50.
[9]陈宝春,陈国栋,苏家战,等.采用UHPC-RC阶梯桩的整体桥试设计[J].建筑科学与工程学报,2018,35(1):1-8.
CHEN Bao-chun,CHEN Guo-dong,SU Jia-zhan,et al.Trial-design Study on Integral Abutment Bridge by Using UHPC-RC Stagewise Piles[J].Journal of Architecture and Civil Engineering,2018,35(1):1-8.
[10]林志平.整体式桥台曲线箱梁桥的概念设计[J].上海应用技术学院学报:自然科学版,2012,12(2):97-101.
LIN Zhi-ping.Conceptual Design of Integral Abutment Curved Box Bridges[J].Journal of Shanghai Institute of Technology:Natural Science,2012,12(2):97-101.
[11]XU Z,CHEN B C,ZHUANG Y Z,et al.Rehabilitation and Retrofitting of a Multispan Simply-supported Adjacent Box Girder Bridge into a Jointless and Continuous Structure[J].Journal of Performance of Constructed Facilities,2018,31(1):04017112.
[12]陈宝春,付 毳,庄一舟,等.中国无伸缩缝桥梁应用现状与发展对策[J].中外公路,2018,38(1):87-95.
CHEN Bao-chun,FU Cui,ZHUANG Yi-zhou,et al.Application Status and Development Strategy of Jointless Bridge in China[J].Journal of China & Foreign Highway,2018,38(1):87-95.
[13]BARKER R M,DUNCAN J M,ROJIANI K B,et al.Manuals for the Design of Bridge Foundations:Shallow Foundations,Driven Piles,Retaining Walls and Abutments,Drilled Shafts,Estimating Tolerable Movements,Load Factor Design Specifications,and Commentary[M].Washington DC:Transportation Research Board,1991.
[14]XUE J Q.Retrofit of Existing Bridges with Concept of Integral Abutment Bridge-static and Dynamic Parametric Analyses[D].Trento:University of Trento,2013.
[15]JTG D63—2007,公路桥涵地基与基础设计规范[S].
JTG D63—2007,Code for Design of Ground Base and Foundation of Highway Bridges and Culverts[S].
[16]JTG D60—2015,公路桥涵设计通用规范[S].
JTG D60—2015,General Specifications for Design of Highway Bridges and Culverts[S].
[17]JTG 3362—2018,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
JTG 3362—2018,Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts[S].
[18]JTG/T B02-01—2008,公路桥梁抗震设计细则[S].
JTG/T B02-01—2008,Guidelines for Seismic Design of Highway Bridges[S].

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-01-09
基金项目:国家自然科学基金项目(51578161); 福建省高校优秀人才支持计划项目(601897)
作者简介:许 震(1975-),男,安徽无为人,盐城工学院讲师,福州大学工学博士研究生,E-mail:569834913@qq.com。
通信作者:罗小烨(1990-),男,福建龙岩人,工学博士研究生,E-mail:511731938@qq.com。
更新日期/Last Update: 2019-11-26