|本期目录/Table of Contents|

[1]郁有升,周其霖,韩俊良.带齿夹板钢木连接节点受力机理[J].建筑科学与工程学报,2020,37(04):60-68.[doi:10.19815/j.jace.2019.05065]
 YU You-sheng,ZHOU Qi-lin,HAN Jun-liang.Mechanical Mechanism of Steel-glulam Connections with Teeth on Splints[J].Journal of Architecture and Civil Engineering,2020,37(04):60-68.[doi:10.19815/j.jace.2019.05065]
点击复制

带齿夹板钢木连接节点受力机理(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年04期
页码:
60-68
栏目:
出版日期:
2020-07-30

文章信息/Info

Title:
Mechanical Mechanism of Steel-glulam Connections with Teeth on Splints
文章编号:
1673-2049(2020)04-0060-09
作者:
郁有升12周其霖1韩俊良1
(1. 青岛理工大学 土木工程学院,山东 青岛 266033; 2. 青岛理工大学 山东省高等学校蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033)
Author(s):
YU You-sheng12 ZHOU Qi-lin1 HAN Jun-liang1
(1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China; 2. Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, Shandong, China)
关键词:
胶合木网壳 带齿夹板钢木连接节点 受力机理 单调荷载 破坏模式
Keywords:
glulam reticulated shell steel-glulam connection with teeth on splint mechanical mechanism monotonic load failure mode
分类号:
TU366
DOI:
10.19815/j.jace.2019.05065
文献标志码:
A
摘要:
为解决胶合木网壳螺栓连接节点初始刚度低、木梁螺栓孔易发生劈裂的问题,提出一种带齿夹板钢木连接节点。通过试验研究了带齿夹板节点(JD-2)在单调荷载作用下的力学性能和破坏模式,并与同尺寸下不含钢齿的普通夹板节点(JD-1)进行对比分析。为深入研究带齿夹板节点的受力机理,对带齿夹板节点进行有限元模拟。结果表明:JD-1的破坏模式为木梁沿螺栓孔水平连线方向的横纹劈裂破坏,JD-2的破坏模式为夹板屈服破坏; 与JD-1相比,JD-2的初始刚度提高了47.18%,极限承载力提高了31.4%,延性系数提高了19.83%; 钢齿与木梁之间的机械咬合作用可以有效减少木梁螺栓孔初始间隙对节点刚度的不利影响; 在弯矩与剪力联合作用下,荷载通过钢齿及螺栓共同传递给木梁,减少了木梁螺栓孔的应力,因此延缓了木梁螺栓孔的开裂; 随着夹板翼缘厚度的增加,节点的受弯性能呈现增大的趋势; 增加夹板布齿率,木梁螺栓孔受到螺栓挤压应力减小,钢齿阻止夹板与木梁之间的相对滑动能力增强,建议夹板布齿率取0.46%~0.65%。
Abstract:
In order to solve the problems of low initial stiffness of bolted connections in glulam reticulated shells and easy splitting of bolt holes in glulam beams, a kind of steel-glulam connection with teeth on splints was proposed. The mechanical properties and failure modes of the connection with teeth on splints(JD-2)under monotonic load were studied by test and compared with the ordinary connection(JD-1)without teeth on splints under the same size. In order to study the stress mechanism of the splint connections with teeth, the finite element simulation of the connections was carried out. The results show that the failure mode of JD-1 is the transverse splitting along the horizontal direction of bolt holes in glulam beams, and that of JD-2 is yield failure of the splints. Compared with JD-1, the initial stiffness, ultimate bearing capacity and ductility of JD-2 are increased by 47.18%, 31.4% and 19.83% respectively. The mechanical biting effect between steel teeth and glulam beams can effectively reduce the adverse effect of the initial clearance of bolt holes on the stiffness of connections. Under the combined action of bending and shearing, the load is transmitted to the glulam beam through the steel teeth and bolts, which can reduce the stress around the bolt holes and delay the cracking of the bolt holes in the glulam beam. With the increase of the thickness of the splint flange, the flexural behavior of the connections tends to increase. With the increase of steel teeth ratio, the stress of the bolt holes of glulam beams is reduced by the extrusion of the bolt, and the ability of steel teeth to prevent the relative sliding between splint and glulam beams is enhanced. It is suggested that the steel teeth ratio is 0.46%-0.65%.

参考文献/References:

[1] GB/T 50708—2012,胶合木结构技术规范[S].
GB/T 50708—2012,Technical Code of Glued Laminated Timber Structures[S].
[2]LOPEZ A,PUENTE I,SERNA M A.Direct Evaluation of the Buckling Loads of Semi-rigidly Jointed Single-layer Latticed Domes Under Symmetric Loading[J].Engineering Structures,2007,29(1):101-109.
[3]LOPEZ A,PUENTE I,SERNA M A,et al.Numerical Model and Experimental Tests on Single-layer Latticed Domes with Semi-rigid Joints[J].Computers & Structures,2007,85(7/8):360-374.
[4]MA H H,FAN F,SHEN S Z.Numerical Parametric Investigation of Single-layer Latticed Domes with Semi-rigid Joints[J].Journal of the International Association for Shell and Spatial Structures,2008,49(2):99-110.
[5]FAN F,MA H H,CAO Z,et al.Direct Estimation of Critical Load for Single-layer Reticulated Domes with Semi-rigid Joints[J].International Journal of Space Structures,2010,25(1):15-24.
[6]周华樟,祝恩淳,刘志周.胶合木网壳半刚性节点受力性能试验研究[J].建筑结构学报,2015,36(3):106-111.
ZHOU Hua-zhang,ZHU En-chun,LIU Zhi-zhou.Experimental Investigation on Mechanical Performance of Semi-rigid Joints in Reticulated Glulam Shells[J].Journal of Building Structures,2015,36(3):106-111.
[7]孙小鸾,刘伟庆,陆伟东,等.单层K6型球面胶合木网壳结构受力性能试验研究[J].建筑结构学报,2017,38(9):121-130.
SUN Xiao-luan,LIU Wei-qing,LU Wei-dong,et al.Experimental Investigation on Mechanical Performance of K6 Single-layer Reticulated Glulam Shells[J].Journal of Building Structures,2017,38(9):121-130.
[8]何敏娟,胡 超,舒 展.节点半刚性对K6单层木网壳稳定性能的影响[J].特种结构,2018,35(4):69-80.
HE Min-juan,HU Chao,SHU Zhan.Influence of Joint Semi-rigidity on Stability of K6 Single-layer Timber Reticulated Shell with Slotted-in Joints[J].Special Structures,2018,35(4):69-80.
[9]徐天琦,马瑜蓉,宋晓滨,等.带翼缘钢填板-螺栓连接胶合木梁-柱节点转动性能试验研究[J].建筑结构学报,2017,38(9):131-137.
XU Tian-qi,MA Yu-rong,SONG Xiao-bin,et al.Experimental Study on Rotational Behavior of Bolted Glulam Beam-to-column Connections with Slotted-in Flanged Steel Plates[J].Journal of Building Structures,2017,38(9):131-137.
[10]陆伟东,孙洪锋,刘伟庆.自攻螺钉增强胶合木梁柱螺栓节点受力性能试验研究[J].建筑结构学报,2016,37(4):80-86.
LU Wei-dong,SUN Hong-feng,LIU Wei-qing.Experimental Study on Behavior of Bolted Glulam Beam-to-column Connections Strengthened by Self-tapping Screws[J].Journal of Building Structures,2016,37(4):80-86.
[11]GECYS T,DANIUNAS A.Experimental Investigation of Glued Laminated Timber Beam to Beam Connections Filled with Cement Based Filler[J].Procedia Engineering,2013,57:320-326.
[12]何敏娟,倪淑娜,马人乐,等.木结构钢填板预应力套管螺栓连接性能试验[J].同济大学学报:自然科学版,2013,41(9):1353-1358.
HE Min-juan,NI Shu-na,MA Ren-le,et al.Loading Tests of Prestressed Tube Bolted Joint with Slotted-in Steel plate[J].Journal of Tongji University:Natural Science,2013,41(9):1353-1358.
[13]WANYAMA O G,SAWATA K,HIRAI T,et al.Effective Lateral Resistance of Combined Timber Joints with Nails and Bolts[J].Journal of Wood Science,2012,58(1):9-19.
[14]GB 50017—2017,钢结构设计标准[S].
GB 50017—2017,Standard for Design of Steel Structures[S].
[15]YASUMURA M,KAWAI N.Engineering Seismic Performance of Wood-framed Structures[C]//IWEC.Proceedings of 1998 International Wood Engineering Conference.Lausanne:IWEC,1998:564-571.
[16]BS EN 12512-2001,Timber Structures — Test Method — Cyclic Testing of Joints Made with Mechanical Fasteners[S].
[17]KARACABEYLI E,CECCOTTI A.Nailed Wood-frame Shear Walls for Seismic Loads:Test Results and Design Considerations[C]//SEWC.Proceedings of the Structural Engineers World Congress'98.San Francisco:Elsevier,1998:T207-6.
[18]HONG J P,BARRETT D.Three-dimensional Finite-element Modeling of Nailed Connections in Wood[J].Journal of Structural Engineering,2010,136(6):715-722.
[19]SONG X B,LAM F.Stability Capacity and Lateral Bracing Requirements of Wood Beam-columns[J].Journal of Structural Engineering,2010,136(2):211-218.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-07-16
基金项目:国家重点研发计划项目(2017YFC0703506)
作者简介:郁有升(1976-),男,山东莒南人,副教授,工学博士,E-mail:yuyousheng@126.com。
更新日期/Last Update: 2020-07-29