|本期目录/Table of Contents|

[1]谢永利,刘毅鑫,王 东.路桥过渡段填料中动荷载传递特性[J].建筑科学与工程学报,2020,37(04):78-86.[doi:10.19815/j.jace.2019.11043]
 XIE Yong-li,LIU Yi-xin,WANG Dong.Characteristics of Dynamic Load Transfer in Packing at Bridge-subgrade Transition Sections[J].Journal of Architecture and Civil Engineering,2020,37(04):78-86.[doi:10.19815/j.jace.2019.11043]
点击复制

路桥过渡段填料中动荷载传递特性(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年04期
页码:
78-86
栏目:
出版日期:
2020-07-30

文章信息/Info

Title:
Characteristics of Dynamic Load Transfer in Packing at Bridge-subgrade Transition Sections
文章编号:
1673-2049(2020)04-0078-09
作者:
谢永利1刘毅鑫1王 东2
(1. 长安大学 公路学院,陕西 西安 710064; 2. 中交二公局东萌工程有限公司,陕西 西安 710119)
Author(s):
XIE Yong-li1 LIU Yi-xin1 WANG Dong2
( 1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. CCCC-SHEC Dongmeng Engineering Co., Ltd., Xi'an 710119, Shaanxi, China)
关键词:
路桥过渡段 级配碎石 动荷载 夯击遍数 传递特性
Keywords:
bridge-subgrade transition section graded gravel dynamic load number of tamping characteristic of transfer
分类号:
U413
DOI:
10.19815/j.jace.2019.11043
文献标志码:
A
摘要:
为研究动荷载在路桥过渡段级配碎石填料中的传递规律,在路桥过渡段填筑过程中分别布设了3层土压力盒,各层均按梅花形布设,对压路机往返压实过程与液压夯夯击过程中各点应力进行实时监测,分析了压路机的振动荷载与液压夯的冲击荷载在同一填筑平面的传递特征; 进一步将竖直方向的各层测点元件拟定为对应的荷载传递路径,以此分析了各条路径中动荷载竖向传递规律。结果表明:填料的压实或夯击遍数直接影响动荷载的传递特性,随着压实或夯击遍数的增加,压力盒测得的应力值逐渐增大; 随着夯击遍数的增加,同一深度处填料的相对应力增加量均呈台阶状递增; 压路机与液压夯产生的动荷载在填料中的荷载衰减量随着深度增加逐步递减; 填料经过压路机与液压夯的6遍压实与夯击后,同一深度处的冲击荷载增加量为振动荷载增加量的4倍左右,液压夯处理路基填料的效果尤为显著; 试验结果为今后级配碎石填筑路桥过渡段提供了现场测试方案,为后续施工提供了理论指导,使现场测试环节更加完善。
Abstract:
In order to study the rules of dynamic load transfer in graded gravel packing at bridge-subgrade transition sections, 3 layers of earth-pressure cells during the filling process at the bridge-subgrade transition section were set up, each layer was arranged according to quincunx type. Through real-time monitoring of the stress at different points during the road roller compacting process and the hydraulic rammer tamping process, the transfer characteristics of vibrating load and impact load of the road roller were analyzed on the same filling plane. By further fixing the cells on each layer in the vertical direction as the corresponding path of load transfer, the rules of vertical transfer of dynamic load in each path were also studied. The results show that the compaction degree of filler or the number of tamping directly affect the transmission characteristics of the dynamic loads. The stress value measured from the pressure cell increases with the compaction degree or the tamping number increasing. The increments of relative stress make a stepladder like increase with the number of tamping increasing at the same depth of the filler. The load attenuation of dynamic load generated by roller and hydraulic rammer in the filling decreases with the depth. After six times of compaction by roller and hydraulic rammer, the increase of impact load at the same depth is about four times of the increase of vibration load, and the effect of hydraulic ramming on subgrade filling is particularly significant. The experiment provides an on-site test plan for future bridge-subgrade transition sections filled with graded gravel, and a theoretical guide for subsequent construction, it will further complete on-site testing.

参考文献/References:

[1] 蒋关鲁,王力伟,杭红星.基于离心模型试验的路桥变形耦合特性数值模拟研究[J].土木工程学报,2012,45(8):148-157.
JIANG Guan-lu,WANG Li-wei,HANG Hong-xing.Numerical Simulation of Centrifuge Model Test on the Coupling Characteristics of Bridge Approach[J].China Civil Engineering Journal,2012,45(8):148-157.
[2]涂仁盼,冷伍明,聂如松,等.朔黄重载铁路某路桥过渡段沉降监测及预测[J].铁道科学与工程学报,2019,16(6):1412-1419.
TU Ren-pan,LENG Wu-ming,NIE Ru-song,et al.Monitoring and Prediction for a Bridge-subgrade Transition Zone Settlement of Shuo-huang Heavy Haul Railway[J].Journal of Railway Science and Engineering,2019,16(6):1412-1419.
[3]贾 亮,梁 荣,姚 凯.路桥过渡段路基工后沉降监测试验研究[J].铁道工程学报,2017(9):18-21,82.
JIA Liang,LIANG Rong,YAO Kai.Research on the In-situ Monitoring of Post-construction Settlement of Bridge-subgrade Transition Section[J].Journal of Railway Engineering Society,2017(9):18-21,82.
[4]陈 虎.高速铁路无砟轨道路堤地基差异沉降传递规律及过渡段动力学试验研究[D].成都:西南交通大学,2013.
CHEN Hu.Study on Transfer Behavior of Embankment Foundation Differential Settlement and Bridge/Approach Location Dynamic Experiment of High-speed Railway Ballastless Track[D].Chengdu:Southwest Jiaotong University,2013.
[5]牛富俊,林战举,鲁嘉濠,等.青藏铁路路桥过渡段沉降变形影响因素分析[J].岩土力学,2011,32(增2):372-377.
NIU Fu-jun,LIN Zhan-ju,LU Jia-hao,et al.Study of the Influencing Factors of Roadbed Settlement in Embankment-bridge Transition Section Along Qinghai-Tibet Railway[J].Rock and Soil Mechanics,2011,32(S2):372-377.
[6]陈永福,高燕希,张起森.Netlon土工网在高等级公路桥台跳车处理中的试验研究[J].土木工程学报,1996,29(1):41-47.
CHEN Yong-fu,GAO Yan-xi,ZHANG Qi-sen.Experimental Study on Treatment of Jump at Bridge Abutment Using Netlon Geotexile in Highway[J].China Civil Engineering Journal,1996,29(1):41-47.
[7]张 军,郑俊杰,马 强,等.路桥过渡段路堤加筋现场试验和数值模拟分析[J].华中科技大学学报:自然科学版,2011,39(9):87-90.
ZHANG Jun,ZHENG Jun-jie,MA Qiang,et al.Experimental and Numerical Simulation Analysis on Geosynthetic Reinforced Embankment at Bridge Approaches[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2011,39(9):87-90.
[8]俞永华,谢永利,杨晓华,等.土工格室柔性搭板处治的路桥过渡段差异沉降三维数值分析[J].中国公路学报,2007,20(4):12-18.
YU Yong-hua,XIE Yong-li,YANG Xiao-hua,et al.Three Dimensional Numerical Analysis of Geocell Flexible Approach Slab for Treating Differential Settlement at Bridge Subgrade Transition Section[J].China Journal of Highway and Transport,2007,20(4):12-18.
[9]MOHAJERANI A,ASHDOWN M,ABDIHASHI L,et al.Expanded Polystyrene Geofoam in Pavement Construction[J].Construction and Building Materials,2017,157:438-448.
[10]PUPPALA A J,RUTTANAPORAMAKUL P,CONGRESS S S C.Design and Construction of Lightweight EPS Geofoam Embedded Geomaterial Embankment System for Control of Settlements[J].Geotextiles and Geomembranes,2019,47(3):295-305.
[11]王楚发.高速铁路路桥过渡段地基加固技术研究[D].成都:西南交通大学,2017.
WANG Chu-fa.A Study on Foundation Reinforcement Technology of the Bridge-subgrade Transition Section of High-speed Railway[D].Chengdu:Southwest Jiaotong University,2017.
[12]JAMSAWANG P,YOOBANPOT N,THANASISATHIT N,et al.Three-dimensional Numerical Analysis of a DCM Column-supported Highway Embankment[J].Computers and Geotechnics,2016,72:42-56.
[13]BASACK S,INDRARATNA B,RUJIKIATKAMJORN C,et al.Modeling the Stone Column Behavior in Soft Ground with Special Emphasis on Lateral Deformation[J].Journal of Geotechnical and Geoenvironmental Engineering,2017,143(6):04017016.
[14]丛嘉珅.重载铁路路桥过渡段湿陷性黄土特性及路基沉降控制研究[D].北京:北京交通大学,2017.
CONG Jia-shen.Research on Collapsible Loess Characteristics and Subgrade Settlement Control in Transitional Section of Heavy Haul Railway[D].Beijing:Beijing Jiaotong University,2017.
[15]MENARD L,BROISE Y.Theoretical and Practical Aspects of Dynamic Consolidation[J].Geotechnique,1975,25(1):3-18.
[16]龚福初.强夯法在地基加固中的应用研究[D].长沙:中南大学,2009.
GONG Fu-chu.Study on Dynamic Consolidation Method in Foundation Improvement[D].Changsha:Central South University,2009.
[17]苏晓江.强夯法在地基加固中的应用[D].青岛:中国海洋大学,2004.
SU Xiao-jiang.Research on the Solidified Mechanism and Quality Resting by Dynamic Compaction[D].Qingdao:Ocean University of China,2004.
[18]宋乾坤.强夯地基加固的物理模拟试验研究[D].北京:中国地质大学(北京),2009.
SONG Qian-kun.Physical Simulation Experiment Research on Dynamic Compaction of Soil Mass[D].Beijing:China University of Geosciences(Beijing),2009.
[19]吕秀杰,龚晓南,李建国.强夯法施工参数的分析研究[J].岩土力学,2006,27(9):1628-1632.
LÜ Xiu-jie,GONG Xiao-nan,LI Jian-guo.Research on Parameters of Construction with Dynamic Compaction Method[J].Rock and Soil Mechanics,2006,27(9):1628-1632.
[20]TARAWNEH B,BODOUR W A L.Liquefaction Mitigation of Desert Sand Using Rapid Impact Compaction[J].Arabian Journal of Geosciences,2018,11(12):1-10.
[21]ALLOUZI R,BODOUR W A L,ALKLOUB A,et al.Finite-element Model to Simulate Ground-improvement Technique of Rapid Impact Compaction[J].Proceedings of the Institution of Civil Engineers-ground Improvement,2019,172(1):44-52.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-11-14
基金项目:中央高校基本科研业务费专项资金项目(300102219110)
作者简介:谢永利(1961-),男,山西芮城人,教授,博师研究生导师,工学博士,博士后,E-mail:xieyl@263.net。
更新日期/Last Update: 2020-07-29