|本期目录/Table of Contents|

[1]卢 迅,刘永健,孙立鹏,等.初始缺陷对矩形钢管混凝土柱壁板屈曲后强度的影响[J].建筑科学与工程学报,2020,37(05):161-169.[doi:10.19815/j.jace.2020.09044]
 LU Xun,LIU Yong-jian,SUN Li-peng,et al.Effect of Initial Imperfection on Post-buckling Strength of Concrete-filled Rectangular Steel Tubular Column Slab[J].Journal of Architecture and Civil Engineering,2020,37(05):161-169.[doi:10.19815/j.jace.2020.09044]
点击复制

初始缺陷对矩形钢管混凝土柱壁板屈曲后强度的影响(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
161-169
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Effect of Initial Imperfection on Post-buckling Strength of Concrete-filled Rectangular Steel Tubular Column Slab
文章编号:
1673-2049(2020)05-0170-12
作者:
卢 迅1刘永健12孙立鹏1姜 磊12
1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 公路大型结构安全教育部工程研究中心,陕西 西安 710064
Author(s):
LU Xun1 LIU Yong-jian12 SUN Li-peng1 JIANG Lei12
1. School of Highway, Chang’an University, Xi’an 710064, Shaanxi, China; 2. Research Center of Highway Large Structure Engineering on Safety of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China
关键词:
钢管混凝土 焊接残余应力 几何初始缺陷 屈曲后强度
Keywords:
concrete-filled steel tube welding residual stress initial geometric imperfection post-buckling strength
分类号:
TU312
DOI:
10.19815/j.jace.2020.09044
文献标志码:
A
摘要:
为了研究焊接残余应力和几何初始缺陷对矩形钢管混凝土柱壁板屈曲后强度的影响,采用有限元软件ABAQUS进行参数分析,参数包括壁板的屈服强度、宽厚比、几何初始缺陷取值大小、是否施加几何初始缺陷和焊接残余应力,并考虑两者耦合作用,给出考虑焊接残余应力和几何初始缺陷后的矩形钢管混凝土柱壁板有效宽度计算公式,并与试验数据进行比较。结果表明:建立的有限元模型能较好地模拟壁板的局部屈曲和屈曲后行为,焊接残余应力和几何初始缺陷都会降低壁板屈曲后强度,且焊接残余应力的影响较大; 不同强度等级的钢材都需要考虑焊接残余应力和几何初始缺陷的影响,对于屈服强度大于460 MPa的高强钢材,当宽厚比大于65时,可以忽略几何初始缺陷的影响; 给出的有效宽度计算公式可以较为准确且偏保守地预测矩形钢管混凝土柱壁板屈曲后强度。
Abstract:
In order to study the influence of welding residual stress and initial geometric imperfection on the post-buckling strength of concrete-filled rectangular steel tubular column slab, the finite element software ABAQUS was used to analyze the parameters, including the yield strength of slab, the ratio of width to thickness, the size of initial geometric imperfection, the application of initial geometric imperfection and welding residual stress, and the coupling effect of the two was considered. Finally, the formula of effective width of concrete-filled rectangular steel tubular column slab considering welding residual stress and initial geometric imperfection was given and compared with the experimental data. The results show that the finite element model established can better simulate the local buckling and post-buckling behavior of the slab, welding residual stress and initial geometric imperfection will reduce the post-buckling strength of the slab, and the influence of welding residual stress is greater. The effects of welding residual stress and initial geometric imperfection need to be considered for steels with different strength grades. For high strength steels with yield strength greater than 460 MPa, the influence of initial geometric imperfection can be ignored when the ratio of width to thickness is greater than 65. The effective width formula can accurately and conservatively predict the post-buckling strength of concrete-filled rectangular steel tubular column slab.

参考文献/References:

[1] LIU J,LIU Y J,ZHANG G J.Experimental Analysis of Temperature Gradient Patterns of Concrete-filled Steel Tubular Members[J].Journal of Bridge Engineering,2019,24(11):04019109.
[2]高诣民,刘永健,周绪红,等.高性能钢管混凝土组合桁梁桥[J].中国公路学报,2018,31(12):174-187.
GAO Yi-min,LIU Yong-jian,ZHOU Xu-hong,et al.High-performance CFST Composite Truss Bridge[J].China Journal of Highway and Transport,2018,31(12):174-187.
[3]刘永健,王康宁,刘 彬,等.矩形钢管混凝土组合桁梁负弯矩区受力性能试验研究[J].建筑结构学报,2019,40(9):74-83.
LIU Yong-jian,WANG Kang-ning,LIU Bin,et al.Experimental Research on Mechanical Behavior of RCFST Composite Truss Beam Under Negative Bending[J].Journal of Building Structures,2019,40(9):74-83.
[4]刘永健,马印平,田智娟,等.矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J].中国公路学报,2018,31(5):53-62.
LIU Yong-jian,MA Yin-ping,TIAN Zhi-juan,et al.Field Test of Rectangular Concrete Filled Steel Tubular Composite Truss Bridge with Continuous Rigid System[J].China Journal of Highway and Transport,2018,31(5):53-62.
[5]TAO Z,UY B,HAN L H,et al.Analysis and Design of Concrete-filled Stiffened Thin-walled Steel Tubular Columns Under Axial Compression[J].Thin-walled Structures,2009,47(12):1544-1556.
[6]YUAN F,HUANG H,CHEN M C.Effect of Stiffeners on the Eccentric Compression Behaviour of Square Concrete-filled Steel Tubular Columns[J].Thin-walled Structures,2019,135:196-209.
[7]ASLANI F,UY B,TAO Z,et al.Behaviour and Design of Composite Columns Incorporating Compact High-strength Steel Plates[J].Journal of Constructional Steel Research,2015,107:94-110.
[8]SHI G,XU K L,BAN H Y,et al.Local Buckling Behavior of Welded Stub Columns with Normal and High Strength Steels[J].Journal of Constructional Steel Research,2016,119:144-153.
[9]张 宁,刘永健,李 慧,等.弹性基底上受非均匀荷载加劲板的局部屈曲特性[J].交通运输工程学报,2017,17(1):36-44.
ZHANG Ning,LIU Yong-jian,LI Hui,et al.Local Buckling Characteristics of Stiffened Rectangular Plate on Elastic Foundation Subjected to Non-uniform Loads[J].Journal of Traffic and Transportation Engineering,2017,17(1):36-44.
[10]LIANG Q Q,UY B.Theoretical Study on the Post-local Buckling of Steel Plates in Concrete-filled Box Columns[J].Computers & Structures,2000,75(5):479-490.
[11]GUO L H,ZHANG S M,KIM W J,et al.Behavior of Square Hollow Steel Tubes and Steel Tubes Filled with Concrete[J].Thin-walled Structures,2007,45(12):961-973.
[12]KHAN M,UY B,TAO Z,et al.Behaviour and Design of Short High-strength Steel Welded Box and Concrete-filled Tube(CFT)Sections[J].Engineering Structures,2017,147:458-472.
[13]BRIDGE R Q,O’SHEA M D.Behaviour of Thin-walled Steel Box Sections with or Without Internal Restraint[J].Journal of Constructional Steel Research,1998,47(1):73-91.
[14]UY B.Local and Post-local Buckling of Concrete Filled Steel Welded Box Columns[J].Journal of Constructional Steel Research,1998,47(1):47-72.
[15]HUANG Z C,LI D X,UY B,et al.Local and Post-local Buckling of Fabricated High-strength Steel and Composite Columns[J].Journal of Constructional Steel Research,2019,154:235-249.
[16]UY B.Local and Postlocal Buckling of Fabricated Steel and Composite Cross Sections[J].Journal of Structural Engineering,2001,127(6):666-677.
[17]CHEN C C,KO J W,HUANG G L,et al.Local Buckling and Concrete Confinement of Concrete-filled Box Columns Under Axial Load[J].Journal of Constructional Steel Research,2012,78:8-21.
[18]LI D X,HUANG Z C,UY B,et al.Slenderness Limits for Fabricated S960 Ultra-high-strength Steel and Composite Columns[J].Journal of Constructional Steel Research,2019,159:109-121.
[19]WANG Y B,LI G Q,CHEN S W.The Assessment of Residual Stresses in Welded High Strength Steel Box Sections[J].Journal of Constructional Steel Research,2012,76:93-99.
[20]KHAN M,PARADOWSKA A,UY B,et al.Residual Stresses in High Strength Steel Welded Box Sections[J].Journal of Constructional Steel Research,2016,116:55-64.
[21]LEE K C,YOO C H.Longitudinal Stiffeners in Concrete-filled Tubes[J].Journal of Structural Engineering,2012,138(6):753-758.
[22]SONG Y C,LI J,CHEN Y Y.Local and Post-local Buckling of Normal/High Strength Steel Sections with Concrete Infill[J].Thin-walled Structures,2019,138:155-169.
[23]TAO Z,HAN L H,WANG D Y.Experimental Behaviour of Concrete-filled Stiffened Thin-walled Steel Tubular Columns[J].Thin-walled Structures,2007,45(5):517-527.
[24]TAO Z,HAN L H,WANG D Y.Strength and Ductility of Stiffened Thin-walled Hollow Steel Structural Stub Columns Filled with Concrete[J].Thin-walled Structures,2008,46(10):1113-1128.
[25]YUAN F,HUANG H,CHEN M C.Behaviour of Square Concrete-filled Stiffened Steel Tubular Stub Columns Under Axial Compression[J].Advances in Structural Engineering,2019,22(8):1878-1894.
[26]THAI H T,UY B,KHAN M,et al.Numerical Modelling of Concrete-filled Steel Box Columns Incorporating High Strength Materials[J].Journal of Constructional Steel Research,2014,102:256-265.
[27]HAN L H,YAO G H,TAO Z.Performance of Concrete-filled Thin-walled Steel Tubes Under Pure Torsion[J].Thin-walled Structures,2007,45(1):24-36.
[28]UY B.Concrete-filled Fabricated Steel Box Columns for Multistorey Buildings:Behaviour and Design[J].Progress in Structural Engineering and Materials,1998,1(2):150-158.
[29]BAN H Y,SHI G,BAI Y,et al.Residual Stress of 460 MPa High Strength Steel Welded Box Section:Experimental Investigation and Modeling[J].Thin-walled Structures,2013,64:73-82.
[30]GE H B,USAMI T.Strength Analysis of Concrete-filled Thin-walled Steel Box Columns[J].Journal of Constructional Steel Research,1994,30(3):259-281.
[31]WRIGHT H D.Local Stability of Filled and Encased Steel Sections[J].Journal of Structural Engineering,1995,121(10):1382-1388.
[32]WANG Y B,LI G Q,CHEN S W,et al.Experimental and Numerical Study on the Behavior of Axially Compressed High Strength Steel Box-columns[J].Engineering Structures,2014,58:79-91.
[33]SHI G,ZHOU W J,BAI Y,et al.Local Buckling of 460 MPa High Strength Steel Welded Section Stub Columns Under Axial Compression[J].Journal of Constructional Steel Research,2014,100:60-70.
[34]SHI G,BAN H Y,BIJLARRAD F S K.Tests and Numerical Study of Ultra-high Strength Steel Columns with End Restraints[J].Journal of Constructional Steel Research,2012,70:236-247.
[35]BS EN 1993-1-5:2006,Eurocode 3:Design of Steel Structures:Part 1-5:Plated Structural Elements[S].
[36]TSUTOMU U.Guidelines for Stability Design Steel Structures[M].Tokyo:Japan Society of Civil Engineers,2005.
[37]GB 50018-2002,冷弯薄壁型钢结构技术规范[S].
GB 50018-2002,Technical Code of Cold-formed Thin-wall Steel Structures[S].
[38]GB 50205-2001,钢结构工程施工质量验收规范[S].
GB 50205-2001,Code for Acceptance of Construction Quality of Steel Structures[S].
[39]Japan Society of Highway Bridges.Specifications for the Design of Highway Bridges[M].Tokyo:Japan Society of Highway Bridges,1990.
[40]THAI H T,VO T P,TRUNG-KIEN N,et al.Explicit Simulation of Bolted Endplate Composite Beam-to-CFST Column Connections[J].Thin-walled Structures,2017,119:749-759.
[41]施 刚,朱 希.高强度结构钢材单调荷载作用下的本构模型研究[J].工程力学,2017,34(2):50-59.
SHI Gang,ZHU Xi.Study on Constitutive Model of High-strength Structural Steel Under Monotonic Loading[J].Engineering Mechanics,2017,34(2):50-59.
[42]HAN L H,YAO G H,ZHAO X L.Tests and Calculations for Hollow Structural Steel(HSS)Stub Columns Filled with Self-consolidating Concrete(SCC)[J].Journal of Constructional Steel Research,2005,61(9):1241-1269.
[43]ANSI/AISC 360-16,Specification for Structural Steel Buildings[S].

相似文献/References:

[1]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(06):1.
 LIU Yong-jian,JIANG Lei,ZHANG Ning.Longitudinal Allowable Stress of Steel Tube in Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2015,32(05):1.
[2]李文贵,罗智予,龙 初,等.钢管混凝土与钢管再生骨料混凝土抗冲击性能研究综述[J].建筑科学与工程学报,2016,33(04):25.
 LI Wen-gui,LUO Zhi-yu,LONG Chu,et al.Review of Impact Resistance of CFST and RACFST[J].Journal of Architecture and Civil Engineering,2016,33(05):25.
[3]赵金钢,赵人达,占玉林.钢管混凝土徐变效应随机性灵敏度分析[J].建筑科学与工程学报,2016,33(04):44.
 ZHAO Jin-gang,ZHAO Ren-da,ZHAN Yu-lin.Randomness Sensitivity Analysis of Creep Effect for Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2016,33(05):44.
[4]晏巧玲,陈宝春,薛建阳.钢管混凝土平缀管格构柱换算长细比计算方法[J].建筑科学与工程学报,2016,33(06):98.
 YAN Qiao-ling,CHEN Bao-chun,XUE Jian-yang.Calculation Method on Equivalent Slenderness Ratio of Concrete-filled Steel Tube Battened Columns[J].Journal of Architecture and Civil Engineering,2016,33(05):98.
[5]黄卿维,余印根,韦建刚,等.钢管混凝土拱桥技术状况检测与评定[J].建筑科学与工程学报,2011,28(03):34.
 HUANG Qing-wei,YU Yin-gen,WEI Jian-gang,et al.Technical Detection and Assessment of Concrete-filled Steel Tubular Arch Bridge[J].Journal of Architecture and Civil Engineering,2011,28(05):34.
[6]檀永杰,徐波,吴智敏,等.基于超声对测法的钢管混凝土脱空检测试验[J].建筑科学与工程学报,2012,29(02):102.
 TAN Yong-jie,XU Bo,WU Zhi-min,et al.Experiment on Void Area Testing of Concrete-filled Steel Tube Based on Ultrasonic Testing Method[J].Journal of Architecture and Civil Engineering,2012,29(05):102.
[7]魏锦,赵均海,刘彦东,等.钢管混凝土轴压短柱的极限承载力分析[J].建筑科学与工程学报,2008,25(03):81.
 WEI Jin,ZHAO Jun-hai,LIU Yan-dong,et al.Analysis of Ultimate Bearing Capacity of Concrete-filled Steel Tubular Axial Compression Short Columns[J].Journal of Architecture and Civil Engineering,2008,25(05):81.
[8]高婧,陈宝春.波形钢板钢管混凝土柱的极限承载力[J].建筑科学与工程学报,2008,25(04):47.
 GAO Jing,CHEN Bao-chun.Ultimate Load Carrying Capacity of Concrete-filled Steel Tubular Column with Corrugated Steel Webs[J].Journal of Architecture and Civil Engineering,2008,25(05):47.
[9]王毅红,郭增辉,李先顺,等.带有芯钢管的钢管混凝土节点的受力机理[J].建筑科学与工程学报,2007,24(01):64.
 WANG Yi-hong,GUO Zeng-hui,LI Xian-shun,et al.Bearing Mechanism of Concrete-filled Steel Tubular Joint with Core Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(05):64.
[10]宋兵,王湛.高强混凝土自收缩对钢管混凝土轴压力学性能的影响[J].建筑科学与工程学报,2007,24(02):59.
 SONG Bing,WANG Zhan.Influences of Autogenous Shrinkage of High-strength Concrete on AxialCompression Mechanics Behavior of Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(05):59.

备注/Memo

备注/Memo:
收稿日期:2020-09-21
基金项目:国家自然科学基金项目(51778058); 中央高校基本科研业务费专项资金项目(300102219310)
作者简介:卢 迅(1995-),男,福建莆田人,工学硕士研究生,E-mail:chdxiaolu@163.com。
通信作者:刘永健(1966-),男,江西玉山人,教授,博士研究生导师,工学博士,E-mail:liuyongjian@chd.edu.cn。
更新日期/Last Update: 2020-10-15