|本期目录/Table of Contents|

[1]周 峰,许 勇,朱 锐,等.砂性地层注浆浆液扩散特性[J].建筑科学与工程学报,2020,37(05):182-192.[doi:10.19815/j.jace.2019.11083]
 ZHOU Feng,XU Yong,ZHU Rui,et al.Diffusion Characteristics of Grouting Slurry in Sandy Stratum[J].Journal of Architecture and Civil Engineering,2020,37(05):182-192.[doi:10.19815/j.jace.2019.11083]
点击复制

砂性地层注浆浆液扩散特性(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
182-192
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Diffusion Characteristics of Grouting Slurry in Sandy Stratum
文章编号:
1673-2049(2020)05-0182-11
作者:
周 峰1许 勇1朱 锐2宋 著1翟德志3牟育敏1
1. 南京工业大学 交通运输工程学院,江苏 南京 210009; 2. 南京水利科学研究院 岩土工程研究所,江苏 南京 210029; 3. 中国建筑西南勘察设计研究院有限公司,四川 成都 610052
Author(s):
ZHOU Feng1 XU Yong1 ZHU Rui2 SONG Zhu1 ZHAI De-zhi3 MOU Yu-min1
1. School of Transportation Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China; 2. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, Jiangsu, China; 3. China Southwest Geotechnical Investigation &
关键词:
渗透注浆 线性回归 浆液扩散半径 强度
Keywords:
permeation grouting linear regression slurry diffusion radius strength
分类号:
TU473.1
DOI:
10.19815/j.jace.2019.11083
文献标志码:
A
摘要:
对南京地区河砂采用筛孔分别为5,2,0.5,0.2 mm 的筛网筛分后,分为不同粒径的砂土,以渗透系数为控制指标,根据试验需要对所用河砂进行配比,模拟出4种砂砾土层。通过对自行研制的一种渗透注浆装置进行室内模拟注浆试验,研究了4种不同颗粒级配的砂样在不同注浆量、水灰比、注浆压力等影响因素下浆液的扩散特性,并在此基础上进行多元线性回归分析。结果表明:浆液扩散半径主要影响因素的主次顺序为注浆压力、渗透系数、水灰比; 注浆量主要影响因素的顺序为注浆压力、渗透系数、水灰比; 结核体强度主要影响因素的顺序为水灰比、渗透系数、注浆压力; 结合试验结果拟合得到了浆液扩散半径、注浆量、结核体强度与渗透系数、浆液水灰比、注浆压力之间的定量关系式; 砂性地层中的浆液扩散半径存在有效半径,为初始半径的75%~80%; 对于在砂性地层中的浆液扩散行为,具有多种浆液扩散模式并存的可能; 所得结论可供类似工程借鉴与参考。
Abstract:
The river sand in Nanjing area was divided into sand with different particle sizes after sieving through the screens with 5, 2, 0.5 and 0.2 mm mesh holes, respectively. According to the needs of the test and taking the permeability coefficient as the control index, the river sand used was proportioned to simulate four kinds of gravel soil layers. The indoor simulation grouting test was carried outthrough a self-developed infiltration grouting device, and the diffusion characteristics of slurry under the influence factors of different grouting amounts, water cement ratios and grouting pressures of four kinds of sand samples with different particle grading were studied. On this basis, the multiple linear regression analysis was carried out. The results show that the main influencing factors of the slurry diffusion radius are grouting pressure, permeability coefficient and water cement ratio; the main influencing factors of grouting volume are grouting pressure, permeability coefficient and water cement ratio; the main influencing factors of the strength of the nodule are water cement ratio, permeability coefficient and grouting pressure; the slurry diffusion radius, grouting volume and grouting pressure are obtained by combining the experimental results. The quantitative relationship between core strength and permeability coefficient, water cement ratio of slurry and grouting pressure is obtained; the effective radius of slurry diffusion radius in sand formation is about 75%-80% of the initial radius; the slurry diffusion behavior in sand formation has the possibility of coexistence of multiple slurry diffusion modes. The test results can be used for reference in similar projects.

参考文献/References:

[1] 张忠苗.灌注桩后注浆技术及工程应用[M].北京:中国建筑工业出版社,2009.
ZHANG Zhong-miao.Post Grouting Technology of Cast-in-place Pile and Its Engineering Application[M].Beijing:China Architecture & Building Press,2009.
[2]YANG M J,YUE Z Q,LEE P K K,et al.Prediction of Grout Penetration in Fractured Rocks by Numerical Simulation[J].Canadian Geotechnical Journal,2002,39(6):1384-1394.
[3]KHAMOV A P.Injection of Clay-cement Grout to Strengthen the Beds of Buildings and Structures[J].Soil Mechanics and Foundation Engineering,1997,34(3):90-93.
[4]BELL F G.Engineering Treatment of Soils[M].London:E & FN Spon,1993.
[5]CAMBEFORT H.The Principles and Applications of Grouting[J].Quarterly Journal of Engineering Geology & Hydrogeology,1977,10(2):57-95.
[6]HUANG C L,FAN J C,YANG W J.A Study of Applying Microfine Cement Grout to Sandy Silt Soil[J].Sino-geotech,2007,111(7):71-82.
[7]KRIZEK R J,PETER T.Chemical Grouting in Soils Permeated by Water[J].Journal of Geotechnical Engineering,1985,111(7):898-915.
[8]BOUCHELAGHEM F,VULLIET L,LEROY D,et al.Real-scale Miscible Grout Injection Experiment and Performance of Advection-dispersion-filtration Model[J].Numerical and Analytical Methods in Geomechanics,2001,25(12):1149-1173.
[9]AXELSSON M,GUSTAFSON G,Fransson A.Stop Mechanism for Cementitious Grouts at Different Water-to-cement Ratios[J].Tunnelling and Underground Space Technology,2009,24(4):390-397.
[10]WANG Q,WANG S Y,SCOTT W S,et al.Experimental Investigation of Pressure Grouting in Sand[J].Soils and Foundations,2016,56(2):161-173.
[11]李术才,张伟杰,张庆松,等.富水断裂带优势劈裂注浆机制及注浆控制方法研究[J].岩土力学,2014,35(3):744-752.
LI Shu-cai,ZHANG Wei-jie,ZHANG Qing-song,et al.Research on Advantage-fracture Grouting Mechanism and Controlled Grouting Method in Water-rich Fault Zone[J].Rock and Soil Mechanics,2014,35(3):744-752.
[12]张庆松,王洪波,刘人太,等.考虑浆液扩散路径的多孔介质渗透注浆机理研究[J].岩土工程学报,2018,40(5):918-924.
ZHANG Qing-song,WANG Hong-bo,LIU Ren-tai,et al.Infiltration Grouting Mechanism of Porous Media Considering Diffusion Path Grout[J].Chinese Journal of Geotechnical Engineering,2018,40(5):918-924.
[13]BAKER W H,CORDING E J,MACPHERSON H H.Compaction Grouting to Control Ground Movement During Tunneling[J].Underground Space,1982,7(3):205-213.
[14]HARBOUR J R,EDWARDS T B,LORIER T H,et al.Stabilizing Grout Compatibility Study[R].Aiken:Westinghouse Savannah River Company,2004.
[15]黄明利,管晓明,吕奇峰.基于弹性力学的诱导劈裂注浆机制分析[J].岩土力学,2013,34(7):2059-2064.
HUANG Ming-li,GUAN Xiao-ming,Lü Qi-feng.Mechanism Analysis of Induced Fracture Grouting Based on Elasticity[J].Rock and Soil Mechanics,2013,34(7):2059-2064.
[16]张庆松,张连震,刘人太,等.基于“浆-土”界面应力耦合效应的劈裂注浆理论研究[J].岩土工程学报,2016,38(2):323-330.
ZHANG Qing-song,ZHANG Lian-zhen,LIU Ren-tai,et al.Split Grouting Theory Based on Slurry-soil Coupling Effects[J].Chinese Journal of Geotechnical Engineering,2016,38(2):323-330.
[17]OCHMANSKI M,MODONI G,BZOWKA J.Numerical Analysis of Tunnelling with Jet-grouted Canopy[J].Soils and Foundations,2015,55(5):929-942.
[18]WANG S Y,CHAN D H,LAM K C,et al.Numerical and Experimental Studies of Pressure-controlled Cavity Expansion in Completely Decomposed Granite Soils of Hong Kong[J].Computers and Geotechnics,2010,37(7/8):977-990.
[19]谢定义,陈存礼,胡再强.试验土工学[M].北京:高等教育出版社,2011.
XIE Ding-yi,CHEN Cun-li,HU Zai-qiang.Experimental Soil Engineering[M].Beijing:Higher Education Press,2011.
[20]张连震.地铁穿越砂层注浆扩散与加固机理及工程应用[D].济南:山东大学,2017.
ZHANG Lian-zhen.Study on Penetration and Reinforcement Mechanism of Grouting in Sand Layer Disclosed by Subway Tunnel and Its Application[D].Jinan:Shandong University,2017.
[21]邹 超.砂土层中超细水泥注浆机理的试验研究[D].淮南:安徽理工大学,2006.
ZOU Chao.Experimental Research on Grouting Mechanics in Clayey Sand Using Super-micro Cement[D].Huainan:Anhui University of Science & Technology,2006.

相似文献/References:

[1]郑传峰,王磊,焦晓磊.淤泥质软粘土剪切蠕变方程及流变参数研究[J].建筑科学与工程学报,2011,28(03):101.
 ZHENG Chuan-feng,WANG Lei,JIAO Xiao-lei.Research on Shear Creep Equation and Rheological Parameters of Sludge Soft Clay[J].Journal of Architecture and Civil Engineering,2011,28(05):101.

备注/Memo

备注/Memo:
收稿日期:2019-11-21
基金项目:国家自然科学基金项目(51778287)
作者简介:周 峰(1979-),男,江苏阜宁人,教授,工学博士,E-mail: zhoufeng@njtech.edu.cn。
通信作者:许 勇(1994-),男,江苏南通人,工学硕士研究生,E-mail:xuyong1301@126.com。
更新日期/Last Update: 2020-10-15