|本期目录/Table of Contents|

[1]周默苇,高皖扬,胡克旭.高温后钢筋-混凝土界面黏结性能分析[J].建筑科学与工程学报,2020,37(06):91-99.
 ZHOU Mo-wei,GAO Wan-yang,HU Ke-xu.Analysis of Bond Behavior of Steel Bar-to-concrete Interface After Exposure to Elevated Temperatures[J].Journal of Architecture and Civil Engineering,2020,37(06):91-99.
点击复制

高温后钢筋-混凝土界面黏结性能分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年06期
页码:
91-99
栏目:
出版日期:
2020-11-30

文章信息/Info

Title:
Analysis of Bond Behavior of Steel Bar-to-concrete Interface After Exposure to Elevated Temperatures
文章编号:
1673-2049(2020)06-0091-09
作者:
周默苇1高皖扬12胡克旭3
1. 上海交通大学 船舶海洋与建筑工程学院,上海 200240; 2. 上海交通大学 海洋工程国家重点实验室, 上海 200240; 3. 同济大学 结构防灾减灾工程系,上海 200092
Author(s):
ZHOU Mo-wei1 GAO Wan-yang12 HU Ke-xu3
1. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China
关键词:
钢筋混凝土结构 黏结性能 理论分析模型 高温后 界面
Keywords:
RC structure bond behavior analytical model after exposure to elevated temperatures interface
分类号:
TU375
DOI:
-
文献标志码:
A
摘要:
基于均匀分布压力作用的厚壁圆筒模型,将钢筋混凝土拉拔试件变形钢筋周围的受高温损伤混凝土保护层按应力状态分为内外两部分,对内层开裂混凝土认为其产生弥散裂缝,并考虑其抗拉软化特性,同时引入高温后混凝土弹性模量、抗拉强度、断裂能的劣化,通过对受高温损伤钢筋-混凝土间黏结破坏时的极限状态进行理论分析,推导得出高温后钢筋-混凝土界面黏结强度的计算方法,建立了与钢筋、混凝土的尺寸、材性相关的高温后钢筋-混凝土界面黏结强度模型。基于混凝土开裂半径与端部滑移之间的线性关系,建立了高温后界面黏结应力-端部滑移关系。对模型计算结果与已有高温后钢筋与混凝土黏结性能试验所得数据进行比较,共对比了118组黏结强度、15组黏结应力-端部滑移关系。结果表明:该理论分析模型具有很高的准确性,可广泛适用于不同参数拉拔试验的高温后界面黏结强度的分析与预测。
Abstract:
Based on the thick-walled cylinder model with uniform pressure at inner surface, the damaged concrete cover around the deformed bar was divided into two parts according to the stress state, including a partially cracked inner part and an uncracked outer one. For the inner cylinder, the smeared cracking assumption and tension softening behavior of the cracked concrete was taken into account with the stiffness reduction along the radial direction. Also, the reductions in the elastic modulus, tensile strength and fracture energy of concrete after exposure to elevated temperatures were properly considered. Based on the theoretical analysis of the ultimate splitting failure between steel bar and concrete damaged by high temperatures, the calculation method and analytical model of the interfacial bond strength between steel bar and concrete after exposure to high temperatures was deduced, which was related to the size and material properties of steel bar and concrete. Moreover, a linear relationship between the radius of the inner cracked cylinder and the end slip of the reinforcing steel bar was proposed, and thus the interfacial bond stress-slip relationship was obtained. The accuracy of the analytical model was validated by comprising the predicted results with available pull out test data on the steel bar-to-concrete interface(including 118 bond strength data and 15 bond stress-end slip curves). The results show that the analytical model has good accuracy, and can be widely used for the analysis and prediction of interfacial bond strength after high temperature in drawing test with different parameters.

参考文献/References:

[1] 吴 波,唐贵和.近年来混凝土结构抗火研究进展[J].建筑结构学报,2010,31(6):110-121. WU Bo,TANG Gui-he.State-of-the-art of Fire-resistance Study on Concrete Structures in Recent Years[J].Journal of Building Structures,2010,31(6):110-121.
[2]HADDAD R H,AL-SALEH R J,AL-AKHRAS N M.Effect of Elevated Temperature on Bond Between Steel Reinforcement and Fiber Reinforced Concrete[J].Fire Safety Journal,2008,43(5):334-343.
[3]MORLEY P D,ROYLES R.Response of the Bond in Reinforced Concrete to High Temperatures[J].Magazine of Concrete Research,1983,35(123):67-74.
[4]HLAVICKA E L V.Bond After Fire[J].Construction and Building Materials,2017,132:210-218.
[5]LU J,LIU H B,CHEN Z H,et al.Experimental Investigation Into the Post-fire Mechanical Properties of Hot-rolled and Cold-formed Steels[J].Journal of Constructional Steel Research,2016,121:291-310.
[6]YANG H F,LAN W W,QIN Y H,et al.Evaluation of Bond Performance Between Deformed Bars and Recycled Aggregate Concrete After High Temperatures Exposure[J].Construction and Building Materials,2016,112:885-891.
[7]BINGOL A F,GUL R.Residual Bond Strength Between Steel Bars and Concrete After Elevated Temperatures[J].Fire Safety Journal,2009,44(6):854-859.
[8]TEPFERS R.Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars[J].Magazine of Concrete Research,1979,31(106):3-12.
[9]王小惠.锈蚀钢筋混凝土梁的承载能力[D].上海:上海交通大学,2004. WANG Xiao-hui.Load Carrying Capacity of Corroded Reinforced Concrete Beams[D].Shanghai:Shanghai Jiao Tong University, 2004.
[10]徐秉业,王建学.弹性力学[M].北京:清华大学出版社,2007. XU Bing-ye,WANG Jian-xue.Elasticity[M].Beijing:Tsinghua University Press,2007.
[11]CEB-FIP Model Code 1990,Design Code[S].
[12]BARZEGAR-JAMSHIDI F,SCHNOBRICH W C.Nonlinear Finite Element Analysis of Reinforced Concrete Under Short Term Monotonic Loading[R].Urbana:University of Illinois at Urbana-champaign,1986.
[13]BAZANT Z P,OH B H.Crack Band Theory for Fracture of Concrete[J].Materials and Structures,1983,16(3):155-177.
[14]PANTAZOPOULOU S J,PAPOULIA K D.Modeling Cover-cracking Due to Reinforcement Corrosion in RC Structures[J].Journal of Engineering Mechanics,2001,127(4):342-351.
[15]BAZANT Z P,CHERN J C.Stress-induced Thermal and Shrinkage Strains in Concrete[J].Journal of Engineering Mechanics,1987,113(10):1493-1511.
[16]HILSDORF H K,BRAMESHUBER W.Code-type Formulation of Fracture Mechanics Concepts for Concrete[J].International Journal of Fracture,1991,51(1):61-72.
[17]ZHANG B,BICANIC N.Fracture Energy of High-performance Concrete at High Temperatures Up to 450 ℃:The Effects of Heating Temperatures and Testing Conditions(Hot and Cold)[J].Magazine of Concrete Research,2006,58(5):277-288.
[18]ZHANG B,BICANIC N,PEARCE C J,et al.Residual Fracture Properties of Normal-and High-strength Concrete Subject to Elevated Temperatures[J].Magazine of Concrete Research,2000,52(2):123-135.
[19]BAKER G.The Effect of Exposure to Elevated Temperatures on the Fracture Energy of Plain Concrete[J].Materials and Structures,1996,29(6):383-388.
[20]NIELSEN C V,BIEANIC N.Residual Fracture Energy of High-performance and Normal Concrete Subject to High Temperatures[J].Materials and Structures,2003,36(8):515-521.
[21]TANG W C,LO T Y.Mechanical and Fracture Properties of Normal-and High-strength Concretes with Fly Ash After Exposure to High Temperatures[J].Magazine of Concrete Research,2009,61(5):323-330.
[22]YU K Q,YU J T,LU Z D.Average Fracture Energy for Crack Propagation in Postfire Concrete[J].Advances in Materials Science and Engineering,2013,2013:143208.
[23]GAO W Y,DAI J G,TENG J G,et al.Finite Element Modeling of Reinforced Concrete Beams Exposed to Fire[J].Engineering Structures,2013,52:488-501.
[24]KHALAF J,HUANG Z H,FAN M Z.Analysis of Bond-slip Between Concrete and Steel Bar in Fire[J].Computers & Structures,2016,162:1-15.
[25]POTHISIRI T,PANEDPOJAMAN P.Modeling of Mechanical Bond-slip for Steel-reinforced Concrete Under Thermal Loads[J].Engineering Structures,2013,48:497-507.

相似文献/References:

[1]董振华,杜修力,韩强,等.FRP加固钢筋混凝土墩柱抗震性能研究综述[J].建筑科学与工程学报,2013,30(02):55.
 DONG Zhen-hua,DU Xiu-li,HAN Qiang.[J].Journal of Architecture and Civil Engineering,2013,30(06):55.
[2]赵琳,李建波,付兵,等.光面钢筋拉拔试验细观数值模拟研究[J].建筑科学与工程学报,2013,30(02):104.
 ZHAO Lin,LI Jian-bo,FU Bing.[J].Journal of Architecture and Civil Engineering,2013,30(06):104.
[3]吴方伯,熊江陵,李 钧,等.基于空间等效桁架单元方法的钢筋混凝土结构非线性分析[J].建筑科学与工程学报,2015,32(03):1.
 WU Fang-bo,XIONG Jiang-ling,LI Jun,et al.Nonlinear Analysis of RC Structure Based on Space Equivalent Truss Element Method[J].Journal of Architecture and Civil Engineering,2015,32(06):1.
[4]王强强,蒋建华.基于气候环境作用的混凝土材料与结构使用寿命预测方法[J].建筑科学与工程学报,2015,32(03):67.
 WANG Qiang-qiang,JIANG Jian-hua.Method for Predicting Service Life of Concrete Materials and Structures Based on Climate Environmental Action[J].Journal of Architecture and Civil Engineering,2015,32(06):67.
[5]汤红卫,顾 炜.钢筋锈蚀对钢筋混凝土结构固有频率和阻尼比影响的试验研究[J].建筑科学与工程学报,2017,34(06):59.
 TANG Hong-wei,GU Wei.Experimental Study on Effect of Reinforcement Corrosion on Natural Frequency and Damping Ratio of Reinforced Concrete Structures[J].Journal of Architecture and Civil Engineering,2017,34(06):59.
[6]屈文俊,邬生吉,秦宇航.活性粉末混凝土力学性能试验[J].建筑科学与工程学报,2008,25(04):13.
 QU Wen-jun,WU Sheng-ji,QIN Yu-hang.Mechanical Property Tests of Reactive Powder Concrete[J].Journal of Architecture and Civil Engineering,2008,25(06):13.

备注/Memo

备注/Memo:
收稿日期:2019-12-19 基金项目:国家自然科学基金项目(51978398); 上海市“科技创新行动计划”自然科学基金项目(19ZR1426200) 作者简介:周默苇(1996-),女,安徽芜湖人,工学硕士研究生,E-mail:zhoumowei@sjtu.edu.cn。 通信作者:高皖扬(1982-),男,安徽桐城人,副教授,博士研究生导师,工学博士,E-mail:wanyanggao@sjtu.edu.cn。
更新日期/Last Update: 1900-01-01