|本期目录/Table of Contents|

[1]张 佶,屈文俊,朱 鹏.迁移型阻锈剂对混凝土中钢筋的长期影响[J].建筑科学与工程学报,2020,37(06):117-126.
 ZHANG Ji,QU Wen-jun,ZHU Peng.Long-term Effects of Migrating Corrosion Inhibitors on Steel Bars in Concrete[J].Journal of Architecture and Civil Engineering,2020,37(06):117-126.
点击复制

迁移型阻锈剂对混凝土中钢筋的长期影响(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年06期
页码:
117-126
栏目:
出版日期:
2020-11-30

文章信息/Info

Title:
Long-term Effects of Migrating Corrosion Inhibitors on Steel Bars in Concrete
文章编号:
1673-2049(2020)06-0117-10
作者:
张 佶1屈文俊2朱 鹏2
1. 中国二十冶集团有限公司,上海 201999; 2. 同济大学 土木工程学院,上海 200092
Author(s):
ZHANG Ji1 QU Wen-jun2 ZHU Peng2
1. China MCC20 Group Corp. Ltd, Shanghai 201999, China; 2. College of Civil Engineering, Tongji University, Shanghai 200092, Shanghai, China
关键词:
迁移型阻锈剂 锈蚀 碳化 电化学阻抗谱 极化曲线
Keywords:
migrating corrosion inhibitor corrosion carbonation electrochemical impedance spectroscopy potentiodynamic polarization curve
分类号:
TU503
DOI:
-
文献标志码:
A
摘要:
采用含有迁移型阻锈剂(MCI)的模拟混凝土孔溶液模拟施用MCI的钢筋混凝土,利用孔溶液中阻锈剂浓度的递减模拟MCI向外部扩散,利用孔溶液中pH值的递减模拟混凝土的碳化,以研究MCI对混凝土中钢筋的长期影响。考虑MCI的类型(醇胺类的N,N-二甲基乙醇胺DMEA和氨基羧酸类的乙二胺四乙酸四钠EDTA-4Na)和浓度(0.1 mol·L-1和0.05 mol·L-1)的影响,并采用电化学阻抗谱测试、动电位极化曲线测试研究钢筋阻抗和腐蚀速率随MCI浓度和溶液pH值的变化情况。研究结果表明:初始模拟孔溶液中的MCI浓度对DMEA的耐久性能有一定的影响,最初采用的MCI浓度越高,钢筋表面吸附层越致密,越不易受溶液中MCI浓度降低的影响,而EDTA-4Na对钢筋的阻抗有削弱作用,当溶液中EDTA-4Na浓度降低时反而出现了阻抗增加现象; 当pH值降低时,DMEA在钢筋表面的吸附层有脱附现象,钢筋的阻抗降低,腐蚀电流密度增大,EDTA-4Na的阻锈作用增强,钢筋的阻抗增大,腐蚀电流密度降低; DMEA的阻锈性能较稳定,当溶液中MCI浓度和pH值降低时钢筋始终处于钝化状态; EDTA-4Na不能提供稳定的阻锈作用,钢筋大部分时期处于脱钝状态。
Abstract:
Simulated concrete pore solution with migrating corrosion inhibitor(MCI)was adopted to simulate reinforced concrete applied MCI and the decreases of MCI concentration and pH value in pore solution were used to simulate the outward diffusion of MCI and carbonation respectively, with the aim of studying the long-term effects of MCI on the passivated steel bars in concrete. The influences of MCI types(amino alcohol based N, N-dimethylethanolamine DMEA and amino carboxylate based ethylenediaminetetraacetic acid tetrasodium salt EDTA-4Na)and MCI concentrations(0.1 mol·L-1 and 0.05 mol·L-1)were investigated. The evolutions of impedance and corrosion rates of steel bars with MCI concentration and pH were studied by electrochemical impedance spectroscopy and potentiodynamic polarization curve tests. The study results show that initial concentration has an effect on the durability of DMEA and the higher the MCI concentration used initially, the more uniform the adsorbing layer on the surface of the steel bar, and the less sensitive to the decrease of the surrounding MCI concentration. However, EDTA-4Na weakens the impedance of the steel bar when the MCI concentration decreases. As pH decreases, the adsorption layer of DMEA desorbs with the decrease of impedance and increase of corrosion current density while the inhibiting effect of EDTA-4Na enhances and the corrosion current density of the steel bars drops. The corrosion resistance of DMEA is stable and the steel bars are remained in passivation state all the time when MCI concentration and pH drop, but EDTA-4Na cannot provide stable corrosion resistance and the steel bars are in depassivation state most of the time.

参考文献/References:

[1] MORRIS W,VAZQUEZ M.A Migrating Corrosion Inhibitor Evaluated in Concrete Containing Various Contents of Admixed Chlorides[J].Cement and Concrete Research,2002,32(2):259-267.
[2]BOLZONI F,GOIDANICH S,LAZZARI L,et al.Corrosion Inhibitors in Reinforced Concrete Structures Part 2 — Repair System[J].Corrosion Engineering,Science and Technology,2006,41(3):212-220.
[3]FEDRIZZI L,AZZOLINI F,BONORA P L.The Use of Migrating Corrosion Inhibitors to Repair Motorways' Concrete Structures Contaminated by Chlorides[J].Cement and Concrete Research,2005,35(3):551-561.
[4]RAKANTA E,ZAFEIROPOULOU T,BATIS G.Corrosion Protection of Steel with DMEA-based Organic Inhibitor[J].Construction and Building Materials,2013,44:507-513.
[5]GAIDIS J M.Chemistry of Corrosion Inhibitors[J].Cement and Concrete Composites,2004,26(3):181-189.
[6]VEDALAKSHMI R,RAJAGOPAL K,PALANISW-AMY N.Determination of Migration Efficiency of Amino Alcohol Based Migrating Corrosion Inhibitor Through Concrete[J].Corrosion Engineering,Science and Technology,2009,44(1):20-31.
[7]屈文俊,王 哲,温华杰.迁移型阻锈剂对碳化混凝土耐久性的维护作用[J].建筑科学与工程学 报,2011,28(3):1-8. QU Wen-jun,WANG Zhe,WEN Hua-jie.Durability Maintenance Effect of Migrating Corrosion Inhibitor on Carbonized Concrete[J].Journal of Architecture and Civil Engineering,2011,28(3):1-8.
[8]ORMELLESE M,BOLZONI F,GOIDANICH S,et al.Corrosion Inhibitors in Reinforced Concrete Structures Part 3 — Migration of Inhibitors into Concrete[J].Corrosion Engineering,Science and Technology,2011,46(4):334-339.
[9]刘志勇,缪昌文,孙 伟.迁移性阻锈剂对氯盐污染钢筋混凝土耐久性的影响(Ⅱ)——长期效果 、形貌与机理分析[J].硅酸盐学报,2010,38(7):1323-1327. LIU Zhi-yong,MIAO Chang-wen,SUN Wei.Effect of Migratory Corrosion Inhibitors on the Durability of Chloride-contaminated Reinforced Concrete(Ⅱ)— Long-term Effect,Morphological and Mechanismic Analysis[J].Journal of the Chinese Ceramic Society,2010,38(7):1323-1327.
[10]HEIYANTUDUWA R,ALEXANDER M G,MACKECHNIE J R.Performance of a Penetrating Corrosion Inhibitor in Concrete Affected by Carbonation-induced Corrosion[J].Journal of Materials in Civil Engineering,2006,18(6):842-850.
[11]HOLLOWAY L,NAIRN K,FORSYTH M.Concentration Monitoring and Performance of a Migratory Corrosion Inhibitor in Steel-reinforced Concrete[J].Cement and Concrete Research,2004,34(8):1435-1440.
[12]CHEN W,DU R G,YE C Q,et al.Study on the Corrosion Behavior of Reinforcing Steel in Simulated Concrete Pore Solutions Using in Situ Raman Spectroscopy Assisted by Electrochemical Techniques[J].Electrochimica Acta,2010,55(20):5677-5682.
[13]ORMELLESE M,LAZZARI L,GOIDANICH S,et al.A Study of Organic Substances as Inhibitors for Chloride-induced Corrosion in Concrete[J].Corrosion Science,2009,51 (12):2959-2968.
[14]KERN P,LANDOLT D.Adsorption of Organic Corrosion Inhibitors on Iron in the Active and Passive State.A Replacement Reaction Between Inhibitor and Water Studied with the Rotating Quartz Crystal Microbalance[J].Electrochimica Acta,2001,47(4):589 -598.
[15]SANCHEZ M,GREGORI J,ALONSO C,et al.Electrochemical Impedance Spectroscopy for Studying Passive Layers on Steel Rebars Immersed in Alkaline Solutions Simulating Concrete Pores[J].Electrochimica Acta,2007,52(27):7634-7641.
[16]LUO H,DONG C F,LI X G,et al.The Electrochemical Behaviour of 2205 Duplex Stainless Steel in Alkaline Solutions with Different pH in the Presence of Chloride [J].Electrochimica Acta,2012,64:211-220.
[17]SIMESCU F,IDRISSI H.Corrosion Behaviour in Alkaline Medium of Zinc Phosphate Coated Steel Obtained by Cathodic Electrochemical Treatment[J].Corrosion Science,2009,51(4):833-840.
[18]BLANCO G,BAUTISTA A,TAKENOUTI H.EIS Study of Passivation of Austenitic and Duplex Stainless Steels Reinforcements in Simulated Pore Solutions[J].Cement and Concrete Composites,2006,28(3):212-219.
[19]FREIRE L,CARMEZIM M J,FERREIRA M G S,et al.The Electrochemical Behaviour of Stainless Steel AISI 304 in Alkaline Solutions with Different pH in the Presence of Chlorides[J].Electrochimica Acta,2011,56(14):5280-5289.
[20]JAMIL H E,MONTEMOR M F,BOULIF R,et al.An Electrochemical and Analytical Approach to the Inhibition Mechanism of an Amino-alcohol-based Corrosion Inhibitor for Reinforced Concrete[J].Electrochimica Acta,2003,48(23):3509-3518.
[21]QIAO G F,OU J P.Corrosion Monitoring of Reinforcing Steel in Cement Mortar by EIS and ENA[J].Electrochimica Acta,2007,52(28):8008-8019.
[22]SERDAR M,ZULI L V,BJEGOVIC D.Long-term Corrosion Behaviour of Stainless Reinforcing Steel in Mortar Exposed to Chloride Environment[J].Corrosion Science,2013,69:149-157.
[23]TRABANELLI G,MONTICELLI C,GRASSI V,et al.Electrochemical Study on Inhibitors of Rebar Corrosion in Carbonated Concrete[J].Cement and Concrete Research,2005,35 (9):1804-1813.
[24]DHOUIBI L,TRIKI E,RAHARINAIVO A.The Application of Electrochemical Impedance Spectroscopy to Determine the Long-term Effectiveness of Corrosion Inhibitors for Steel in Concrete[J].Cement & Concrete Composites,2002,24(1):35-43.
[25]LIU C,BI Q,MATTHEWS A.EIS Comparison on Corrosion Performance of PVD TiN and CrN Coated Mild Steel in 0.5 N NaCl Aqueous Solution[J].Corrosion Science,2001,43 (10):1953-1961.
[26]ASTM C876-94,Standard Test Method for Half-cell Potentials of Uncoated Reinforcing Steel in Concrete[S].
[27]SAWADA S,PAGE C L,PAGE M M.Electrochemical Injection of Organic Corrosion Inhibitors into Concrete[J].Corrosion Science,2005,47(8):2063-2078.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-11-06 基金项目:国家自然科学基金项目(51678430); 国家重点研发计划项目(2017YFC0703000) 作者简介:张 佶(1992-),女,黑龙江大庆人,工学博士,E-mail:zhangji_tj@tongji.edu.cn。
更新日期/Last Update: 1900-01-01