|本期目录/Table of Contents|

[1]钱匡亮,程鹏允,张利锋,等.钢管束结构中混凝土楼板开裂分析[J].建筑科学与工程学报,2021,38(01):107-116.[doi:10.19815/j.jace.2020.05049]
 QIAN Kuang-liang,CHENG Peng-yun,ZHANG Li-feng,et al.Analysis of Cracking of Concrete Floor Slabs in Steel-tube-bundle Structure[J].Journal of Architecture and Civil Engineering,2021,38(01):107-116.[doi:10.19815/j.jace.2020.05049]
点击复制

钢管束结构中混凝土楼板开裂分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年01期
页码:
107-116
栏目:
出版日期:
2021-01-20

文章信息/Info

Title:
Analysis of Cracking of Concrete Floor Slabs in Steel-tube-bundle Structure
文章编号:
1673-2049(2021)01-0107-10
作者:
钱匡亮程鹏允张利锋钱晓倩
(浙江大学 建筑工程学院,浙江 杭州 310058)
Author(s):
QIAN Kuang-liang CHENG Peng-yun ZHANG Li-feng QIAN Xiao-qian
(College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China)
关键词:
钢管束结构 混凝土楼板 建模分析 裂缝 配筋
Keywords:
steel-tube-bundle structure concrete floor slab modeling analysis crack reinforcement
分类号:
TU398
DOI:
10.19815/j.jace.2020.05049
文献标志码:
A
摘要:
针对钢管混凝土束剪力墙结构(简称钢管束结构)中现浇混凝土楼板出现的开裂问题进行有限元分析研究,找出楼板开裂的原因并针对性地给出预防建议。根据钢管束结构不同于混凝土结构的特点,利用ANSYS建立了一套不同于传统设计方法的钢管束结构有限元建模方法,按照实际工程设计文件进行有限元建模分析。结果表明:在正常使用阶段,楼板板面双向应力较大的位置集中在横向、纵向承重构件附近,楼板板底双向应力在跨中位置比较大; 在施工阶段,考虑楼板自重、温度变化和混凝土收缩的影响,楼板板底拉应力最大的区域出现在钢管混凝土束剪力墙等承重构件附近; 楼板应力云图与现场裂缝分布情况有较高的一致性,所提出的建模方法能较好地反映钢管束结构中楼板的受力情况; 根据开裂楼板的配筋验算结果,建议在钢管混凝土束剪力墙周边板格和靠近钢管混凝土柱的板格增加配筋用量。
Abstract:
In light of the cracking problems of cast-in-situ concrete floor slabs in the concrete-filled steel-tube-bundle shear wall structure(steel-tube-bundle structure), the finite element analysis and research were conducted to find out the causes of cracking of floor slabs, and the preventive suggestions were provided. According to the characteristics of the steel-tube-bundle structure different from the concrete structure, a set of finite element modeling methods for the steel-tube-bundle structure different from the traditional design methods were established by using ANSYS, and the finite element modeling analysis was carried out according to the actual engineering design file. The results show that in the normal use stage, the location of larger biaxial stress is concentrated near the transverse and longitudinal load-bearing members on the floor slab surface, and is mainly concentrated on mid-span at bottom of floor slab. In the construction stage, considering the impact of the weight of floor slab, temperature changes and concrete shrinkage, the maximum tensile stress at the bottom of floor slab occurs near the load-bearing members such as concrete-filled steel-tube-bundle shear walls. The stress cloud diagram of the floor has a high consistency with the crack distribution on site, which indicates that the proposed modeling methods can better reflect the stress of the floor slab in the steel-tube-bundle structure. According to the reinforcement check results of the cracked floor slab, it is recommended to increase the amount of reinforcement in the grid around the concrete-filled steel-tube-bundle shear walls and the concrete-filled steel-tube columns.

参考文献/References:

[1] ZHANG X,QIN Y,CHEN Z.Experimental Seismic Behavior of Innovative Composite Shear Walls[J].Journal of Constructional Steel Research,2016,116:218-232.
[2]陈 芳,刘重阳.钢管束混凝土组合结构在高层钢结构住宅中的应用[J].住宅产业,2016(5):39-44.
CHEN Fang,LIU Chong-yang.Application of Concrete-filled Steel-tube-bundle Structure in High-rise Steel Structure Residence[J].Housing Industry,2016(5):39-44.
[3]李 杰.钢管束组合结构剪力墙与钢梁节点抗震性能研究[D].天津:天津大学,2015.
LI Jie.Research on Seismic Performance of Connections Between Bundled Lipped Channel-concrete(BLC-C)Composite Wall and Steel Beam[D].Tianjin:Tianjin University,2015.
[4]葛继平,宗周红.轴压钢管混凝土柱非线性有限元分析[J].福建建筑,2005(3):24-26.
GE Ji-ping,ZONG Zhou-hong.Nonlinear FE Analysis of Rectangular Concrete-filled Steel Tubular Column Under Axial-compression Loading[J].Fujian Architecture & Construction,2005(3):24-26.
[5]李 兵,张 齐,孟 爽.方钢管再生混凝土短柱轴压承载力有限元分析[J].建筑科学与工程学报,2014,31(4):29-34.
LI Bing,ZHANG Qi,MENG Shuang.Finite Element Analysis of Bearing Capacity for Recycled Concrete-filled Square Steel Tubular Stub Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2014,31(4):29-34.
[6]肖 南,杨逢春.不同温度和位移边界下混凝土楼板配筋建议[J].浙江大学学报:工学版,2014,48(11):1925-1932.
XIAO Nan,YANG Feng-chun.Suggestions for Reinforcement Increment in Concrete Floor Slabs Under Different Temperature and Displacement Boundary Conditions[J].Journal of Zhejiang University:Engineering Science,2014,48(11):1925-1932.
[7]陈志华,姜玉挺,张晓萌,等.钢管束组合剪力墙变形性能研究及有限元分析[J].振动与冲击,2017,36(19):36-45.
CHEN Zhi-hua,JIANG Yu-ting,ZHANG Xiao-meng,et al.Deformation Property and Finite Element Analysis of a New Type of Steel Tube Bundle Composite Shear Walls[J].Journal of Vibration and Shock,2017,36(19):36-45.
[8]WEISS W J,YANG W,SHAH S P.Shrinkage Cracking of Restrained Concrete Slabs[J].Journal of Engineering Mechanics,1998,124(7):765-774.
[9]ZHONG J,GARDONI P,ROSOWSKY D.Stiffness Degradation and Time to Cracking of Cover Concrete in Reinforced Concrete Structures Subject to Corrosion[J].Journal of Engineering Mechanics,2010,136(2):209-219.
[10]王 凯.混凝土现浇楼板裂缝的成因与控制研究[D].大连:大连理工大学,2003.
WANG Kai.Study on the Causes and Control of Cracks in Cast-in-place Concrete Floor[D].Dalian:Dalian University of Technology,2003.
[11]钱晓倩,朱耀台,詹树林.现代混凝土早期收缩裂缝形成机理及控裂理念[J].商品混凝土,2008(2):4-7.
QIAN Xiao-qian,ZHU Yao-tai,ZHAN Shu-lin.Formation Mechanism and Crack Control Concept of Early Shrinkage Cracks in Modern Concrete[J].Ready-mixed Concrete,2008(2):4-7.
[12]李凤伟,杨明英,吕冰泽,等.大跨钢梁组合桁架混凝土楼板的裂缝控制[J].建筑施工,2015,37(9):1070-1071.
LI Feng-wei,YANG Ming-ying,LÜ Bing-ze,et al.Crack Control over Long-span Steel Girder and Truss Combined Concrete Slab[J].Building Construction,2015,37(9):1070-1071.
[13]曹建军.商品混凝土现浇楼板裂缝的控制[J].建筑科学与工程学报,2002,19(2):37-40.
CAO Jian-jun.Discussion About the Splitting Control in Commodity-concrete On-site Pouring Board[J].Journal of Architecture and Civil Engineering,2002,19(2):37-40.
[14]李飞庆.多层预制混凝土框架结构非线性地震反应分析[D].上海:同济大学,2008.
LI Fei-qing.Nonlinear Seismic Response Analysis of Multi-storey Precast Reinforced Concrete Frame Structure[D].Shanghai:Tongji University,2008.
[15]张 慧,杨子江.大悬臂鱼腹式薄壁钢箱梁模型试验研究[J].兰州交通大学学报,2009,28(1):22-26.
ZHANG Hui,YANG Zi-jiang.Model Test for Cantilever Fish-bellied Thin-wall Steel Girder[J].Journal of Lanzhou Jiaotong University,2009,28(1):22-26.
[16]陈 勇,李泳全,谢重磊,等.钢管束剪力墙约束下砌体结构推覆试验研究[J].浙江大学学报:工学版,2020,54(3):499-511.
CHEN Yong,LI Yong-quan,XIE Chong-lei,et al.Pushover Test Study of Masonry Structure Restrained by Steel-tube-bundle Shear Walls[J].Journal of Zhejiang University:Engineering Science,2020,54(3):499-511.
[17]朱俞江.箱形截面梁和梁柱的弹塑性稳定极限承载力分析[D].杭州:浙江大学,2003.
ZHU Yu-jiang.Ultimate Load Carrying Capacity Analysis of Box Section Beams and Beam-columns[D].Hangzhou:Zhejiang University,2003.
[18]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
WANG Xin-min.Numerical Analysis of Engineering Structure with ANSYS[M].Beijing:China Communications Press,2007.
[19]谢元丕,冯 刚.ANSYS三维实体单元与板壳单元的组合建模研究[J].机械设计,2009,26(4):5-7.
XIE Yuan-pi,FENG Gang.Study of ANSYS Modeling on the Combination of 3D Entity Unit and Plate-shell Unit[J].Journal of Machine Design,2009,26(4):5-7.
[20]刘晓娟,袁 康.现浇楼板温度收缩裂缝的有限元分析[J].石河子大学学报:自然科学版,2007,25(3):361-363.
LIU Xiao-juan,YUAN Kang.Finite Element Analysis of the Temperature-shrinkage Cracks of Cast- in-place Reinforced Concrete Slab[J].Journal of Shihezi University:Natural Science,2007,25(3):361-363.
[21]詹树林,钱晓倩.起始养护时间对混凝土早期收缩的影响[J].建筑材料学报,2007,10(3):359-363.
ZHAN Shu-lin,QIAN Xiao-qian.Effect of Beginning Curing Time on Early Age Shrinkage of Concrete[J].Journal of Building Materials,2007,10(3):359-363.
[22]GB 50010—2010,混凝土结构设计规范[S].
GB 50010—2010,Code for Design of Concrete Structures[S].

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-05-23
作者简介:钱匡亮(1973-),男,浙江嵊州人,高级工程师,工学博士,E-mail:qklcivil@zju.edu.cn。
更新日期/Last Update: 2021-01-20