|本期目录/Table of Contents|

[1]黄学伟,张潇舸,魏晨晨,等.Q690D钢材十字形焊接接头高温后的断裂破坏试验研究[J].建筑科学与工程学报,2021,38(05):56-65.[doi:10.19815/j.jace.2021.01051]
 HUANG Xue-wei,ZHANG Xiao-ge,WEI Chen-chen,et al.Experimental Research on Post-fire Fracture Failure of Q690D Steel Cross-shaped Welded Joints[J].Journal of Architecture and Civil Engineering,2021,38(05):56-65.[doi:10.19815/j.jace.2021.01051]
点击复制

Q690D钢材十字形焊接接头高温后的断裂破坏试验研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年05期
页码:
56-65
栏目:
出版日期:
2021-09-15

文章信息/Info

Title:
Experimental Research on Post-fire Fracture Failure of Q690D Steel Cross-shaped Welded Joints
文章编号:
1673-2049(2021)05-0056-10
作者:
黄学伟张潇舸魏晨晨赵 军葛建舟
(郑州大学 力学与安全工程学院,河南 郑州 450001)
Author(s):
HUANG Xue-wei ZHANG Xiao-ge WEI Chen-chen ZHAO Jun GE Jian-zhou
(School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China)
关键词:
Q690D钢材 高温 试验研究 断裂破坏 焊接节点 超低周疲劳
Keywords:
Q690D steel high temperature experimental research fracture failure welded joint ultra low cycle fatigue
分类号:
TU391
DOI:
10.19815/j.jace.2021.01051
文献标志码:
A
摘要:
为研究Q690D高强度钢材及焊缝连接件在常温和高温后的断裂性能,选取代表实际梁柱节点局部焊接构造的十字形焊接节点试样,完成了常温和一系列高温后Q690D钢材和ER80-G焊缝金属的单轴拉伸试验,得到了钢材和焊缝金属在不同高温后的弹性模量、屈服强度、极限强度和延伸率。开展了常温和高温后十字形焊接接头的单调拉伸试验和超低周循环试验,研究了Q690D高强度焊接接头的断裂机理,探讨了过火温度、加载制度对焊接接头断裂性能的影响。结果表明:当钢材和焊接接头的过火温度高于600 ℃时,钢材和十字形焊接接头的强度降低,其变形能力开始增大; 800 ℃高温后Q690D钢材的强度降低,但ER80-G焊缝金属的力学性能无明显变化,导致焊接接头经受800 ℃高温后,在单调荷载作用下,其断裂破坏未发生在焊缝处,而发生在母材位置; 循环荷载作用下焊接接头的承载能力和变形能力都低于单调荷载的情况; 试验得到钢材、焊缝金属和焊接接头的力学性能指标,为发展考虑火灾后效应的断裂分析模型提供了基础试验数据。
Abstract:
In order to study the fracture properties of Q690D high strength steel and welded joints at room temperature and after high temperature, the cross-shaped welded joints representing the actual local welding structure of the beam-to-column joints were selected, and a series of uniaxial tensile tests of Q690D steel and ER80-G weld metal at room temperature and after high temperature were conducted. The elastic modulus, yield strength, ultimate strength and elongation of steel and weld metal after high temperatures were obtained. The cross-shaped welded joints at room temperature and after high temperature were tested under monotonic loading and ultra low cyclic loading. The fracture mechanism of Q690D high strength welded joints was analyzed while the effect of post-fire temperature and loading condition on the fracture behavior of steel and welded joints was discussed. The results show that when the temperature is higher than 600 ℃, the post-fire strength of steel and welded joints decreases and the post-fire deformability increases. The strength of Q690D steel decreases after 800 ℃ high temperature, but the mechanical properties of ER80-G weld metal do not change obviously, causing the result that fracture failure of welded joint does not occur at the weld but at the base metal under monotonic loading after 800 ℃ high temperature. The bearing capacity and deformation capacity of welded joints under cyclic loading are lower than those under monotonic loading. The mechanical properties of steel, weld metal as well as the welded joints obtained from the tests are able to provide basic test data to develop fracture analysis models considering the post-fire effect.

参考文献/References:

[1] 刘希月,王元清,石永久,等.高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J].工程力学,2018,35(5):54-64.
LIU Xi-yue,WANG Yuan-qing,SHI Yong-jiu,et al.Experimental Study on the Weld Fracture Behavior of High Strength Steel Beam-to-column Connections[J].Engineering Mechanics,2018,35(5):54-64.
[2]施 刚,班慧勇,石永久,等.高强度钢材钢结构研究进展综述[J].工程力学,2013,30(1):1-13.
SHI Gang,BAN Hui-yong,SHI Yong-jiu,et al.Overview of Research Progress for High Strength Steel Structures[J].Engineering Mechanics,2013,30(1):1-13.
[3]KANVINDE A M,DEIERLEIN G G.Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels Due to Ultra Low Cycle Fatigue[J].Journal of Engineering Mechanics,2007,133(6):701-712.
[4]BLECK W,DAHL W,NONN A,et al.Numerical and Experimental Analyses of Damage Behaviour of Steel Moment Connection[J].Engineering Fracture Mechanics,2009,76(10):1531-1547.
[5]黄学伟,葛建舟,赵 军,等.Q690D高强钢基于连续损伤模型的断裂破坏预测分析[J].工程力学,2020,37(2):230-240.
HUANG Xue-wei,GE Jian-zhou,ZHAO Jun,et al.Fracture Prediction Analysis of Q690D High Strength Steel Based on Continuum Damage Model[J].Engineering Mechanics,2020,37(2):230-240.
[6]HUANG X W,ZHAO J.A Cumulative Damage Model for Extremely Low Cycle Fatigue Cracking in Steel Structure[J].Structural Engineering and Mechanics,2017,62(2):225-236.
[7]廖芳芳,王 伟,李文超,等.钢结构节点断裂的研究现状[J].建筑科学与工程学报,2016,33(1):67-75.
LIAO Fang-fang,WANG Wei,LI Wen-chao,et al.Review on Research Status of Connection Fracture of Steel Structures[J].Journal of Architecture and Civil Engineering,2016,33(1):67-75.
[8]楼国彪,俞 珊,王 锐.高强度螺栓过火冷却后力学性能试验研究[J].建筑结构学报,2012,33(2):33-40.
LOU Guo-biao,YU Shan,WANG Rui.Mechanical Properties of High-strength Bolts After Fire[J].Journal of Building Structures,2012,33(2):33-40.
[9]AZHARI F,HEIDARPOUR A,ZHAO X L.On the Use of Bernstain-Bezier Functions for Modelling the Post-fire Stress-strain Relationship of Ultra-high Strength Steel(Grade 1 200)[J].Engineering Structures,2018,175:605-616.
[10]刘天姿.高强度Q460钢柱受火后力学性能研究[D].重庆:重庆大学,2015.
LIU Tian-zi.Study on Post-fire Mechanical Behavior of High Strength Q460 Steel Columns[D].Chongqing:Chongqing University,2015.
[11]QIANG X,BIJLAARD F S K,KOLSTEIN H.Post-fire Mechanical Properties of High Strength Structural Steels S460 and S690[J].Engineering Structures,2012,35:1-10.
[12]QIANG X,BIJLAARD F S K,KOLSTEIN H.Post-fire Performance of Very High Strength Steel S960[J].Journal of Constructional Steel Research,2013,80:235-242.
[13]WANG W Y,LIU T Z,LIU J P.Experimental Study on Post-fire Mechanical Properties of High Strength Q460 Steel[J].Journal of Constructional Steel Research,2015,114:100-109.
[14]李国强,吕慧宝,张 超.Q690钢材高温后的力学性能试验研究[J].建筑结构学报,2017,38(5):109-116.
LI Guo-qiang,LÜ Hui-bao,ZHANG Chao.Experimental Research on Post-fire Mechanical Properties of Q690 Steel[J].Journal of Building Structures,2017,38(5):109-116.
[15]ZHANG C T,WANG R H,SONG G B.Post-fire Mechanical Properties of Q460 and Q690 High Strength Steels After Fire-fighting Foam Cooling[J].Thin-walled Structures,2020,156:106983.
[16]HUANG Y H,ONISHI Y,HAYASHI K.Inelastic Behavior of High Strength Steels with Weld Connections Under Cyclic Gradient Stress[C]//WCEE.Proceeding of the 11th World Conference on Earthquake Engineering.Oxford:Elsevier Science Ltd,1996:385-390.
[17]刘希月.基于微观机理的高强钢结构材料与节点的断裂性能研究[D].北京:清华大学,2015.
LIU Xi-yue.Investigations on Fracture Behaviours of High Strength Steel Materials and Connections Based on Micromechanical Models[D].Beijing:Tsinghua University,2015.
[18]GB/T 1591—2018,低合金高强度结构钢[S].
GB/T 1591—2018,High Strength Low Alloy Structural Steels[S].
[19]LIAO F F,WANG M Q,TU L S,et al.Micromechanical Fracture Model Parameter Influencing Factor Study of Structural Steels and Welding Materials[J].Construction and Building Materials,2019,215:898-917.
[20]KANVINDE A M,FELL B V,GOMEZ I R,et al.Predicting Fracture in Structural Fillet Welds Using Traditional and Micromechanical Fracture Models[J].Engineering Structures,2008,30(11):3325-3335.

相似文献/References:

[1]赵卫平.基于ANSYS接触分析的粘结-滑移数值模拟[J].建筑科学与工程学报,2011,28(02):44.
 ZHAO Wei-ping.Bond-slip Numerical Simulation Based on ANSYS Contact Analysis[J].Journal of Architecture and Civil Engineering,2011,28(05):44.
[2]肖建庄,黄运标,郑永朝.高温后再生混凝土的残余抗折强度[J].建筑科学与工程学报,2009,26(03):32.
 XIAO Jian-zhuang,HUANG Yun-biao,ZHENG Yong-chao.Residual Flexural Strength of Recycled ConcreteAfter Elevated-temperatures[J].Journal of Architecture and Civil Engineering,2009,26(05):32.
[3]董毓利.火灾时钢筋混凝土板的承载力计算[J].建筑科学与工程学报,2009,26(04):14.
 DONG Yu-li.Calculation of Bearing Capacity of RC Concrete Slabs in Fire[J].Journal of Architecture and Civil Engineering,2009,26(05):14.
[4]周长东,吕西林,金叶,等.火灾高温下玻璃纤维筋的力学性能研究[J].建筑科学与工程学报,2006,23(01):23.
 ZHOU Chang-dong,LU Xi-lin,JIN Ye.Research on Mechanical Behavior of GFRP Bars in High Temperature[J].Journal of Architecture and Civil Engineering,2006,23(05):23.
[5]肖建庄,刘良林,董毓利,等.高性能混凝土高温爆裂研究进展[J].建筑科学与工程学报,2019,36(03):1.
 XIAO Jian-zhuang,LIU Liang-lin,DONG Yu-li,et al.Progress of Study on Explosive Spalling of High Performance Concrete at Elevated Temperatures[J].Journal of Architecture and Civil Engineering,2019,36(05):1.
[6]张云国,陈婷婷,李 敏.高温后页岩轻骨料混凝土断裂特性[J].建筑科学与工程学报,2019,36(04):120.
 ZHANG Yun-guo,CHEN Ting-ting,LI Min.Fracture Properties of Shale Lightweight Aggregate Concrete After High Temperature[J].Journal of Architecture and Civil Engineering,2019,36(05):120.
[7]霍静思,杨鑫鑫,李 智.考虑初始荷载的火灾后RC柱抗震性能[J].建筑科学与工程学报,2019,36(05):21.
 HUO jing-si,YANG Xin-xin,LI Zhi.Seismic Performance of Post-fire RC Columns with Pre-load[J].Journal of Architecture and Civil Engineering,2019,36(05):21.
[8]霍静思,郝柏青,李 智.考虑轴向约束的钢筋混凝土梁高温下 竖向推覆试验[J].建筑科学与工程学报,2020,37(01):41.[doi:10.19815/j.jace.2018.11069]
 HUO Jing-si,HAO Bai-qing,LI Zhi.Vertical Push-down Tests of RC Beams at High Temperature Considering Axial Restraint[J].Journal of Architecture and Civil Engineering,2020,37(05):41.[doi:10.19815/j.jace.2018.11069]
[9]谢开仲,刘振威,朱茂金,等.不同石粉含量的机制砂混凝土高温后力学性能[J].建筑科学与工程学报,2021,38(03):80.[doi:10.19815/j.jace.2020.09070]
 XIE Kai-zhong,LIU Zhen-wei,ZHU Mao-jin,et al.Mechanical Properties of Manufactured Sand Concrete with Different Stone Powder Content After High Temperatures[J].Journal of Architecture and Civil Engineering,2021,38(05):80.[doi:10.19815/j.jace.2020.09070]
[10]金 浏,林曼芳,李潇雅,等.不同尺寸钢筋混凝土短柱高温后抗震性能分析[J].建筑科学与工程学报,2021,38(05):15.[doi:10.19815/j.jace.2021.02031]
 JIN Liu,LIN Man-fang,LI Xiao-ya,et al.Analysis of Seismic Performance of Reinforced Concrete Short Columns with Different Sizes After High Temperature[J].Journal of Architecture and Civil Engineering,2021,38(05):15.[doi:10.19815/j.jace.2021.02031]

备注/Memo

备注/Memo:
收稿日期:2021-01-22
基金项目:国家自然科学基金项目(51608487); 郑州大学国家级大学生创新创业训练计划项目(202010459072); 河南省科技攻关项目(192102310221)
作者简介:黄学伟(1985-),男,安徽亳州人,副教授,工学博士,博士后,E-mail:huangxw@zzu.edu.cn。
更新日期/Last Update: 2021-09-01