|本期目录/Table of Contents|

[1]元成方,王 娣,李好飞,等.纤维掺量对再生砖粉ECC流动性能及力学性能的影响[J].建筑科学与工程学报,2021,38(05):74-82.[doi:10.19815/j.jace.2021.03080]
 YUAN Cheng-fang,WANG Di,LI Hao-fei,et al.Effect of Fiber Content on Fluidity and Mechanical Properties of Recycled Brick Powder ECC[J].Journal of Architecture and Civil Engineering,2021,38(05):74-82.[doi:10.19815/j.jace.2021.03080]
点击复制

纤维掺量对再生砖粉ECC流动性能及力学性能的影响(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年05期
页码:
74-82
栏目:
出版日期:
2021-09-15

文章信息/Info

Title:
Effect of Fiber Content on Fluidity and Mechanical Properties of Recycled Brick Powder ECC
文章编号:
1673-2049(2021)05-0074-09
作者:
元成方王 娣李好飞张 哲
(郑州大学 土木工程学院,河南 郑州 450001)
Author(s):
YUAN Cheng-fang WANG Di LI Hao-fei ZHANG Zhe
(School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China)
关键词:
再生砖粉 超高韧性水泥基复合材料 PVA纤维 流动性能 力学性能
Keywords:
recycled brick powder ECC PVA fiber fluidity mechanical property
分类号:
TU528
DOI:
10.19815/j.jace.2021.03080
文献标志码:
A
摘要:
为更好地掌握再生砖粉超高韧性水泥基复合材料(ECC)的工作性能和力学性能,为再生砖粉ECC的研究与推广提供依据与参考,通过试验研究了不同聚乙烯醇(PVA)纤维体积掺量对再生砖粉ECC流动性能及力学性能的影响。结果表明:再生砖粉全取代石英砂会在一定程度上削弱ECC的力学性能; 随着PVA纤维体积掺量在1.25%~2.0%范围内不断增加,再生砖粉ECC拌合物流动性不断下降; 再生砖粉ECC抗折强度先增大后减小,纤维体积掺量为1.75%时抗折强度最大; 抗压强度随纤维掺量的增加而减小,在纤维体积掺量1.5%~1.75%范围内下降幅度最为明显; 压折比不断下降,材料柔韧性增加; 抗弯强度、弯曲开裂挠度与极限挠度随纤维掺量的增加而增大,试件表现出更好的韧性; 拉伸开裂应变与极限应变随纤维掺量的增加不断增大,拉应变硬化特征明显; 再生砖粉ECC四点弯曲试验中的极限跨中挠度和单轴拉伸试验中的极限应变具有较好的线性相关关系。
Abstract:
In order to better grasp the working performance and mechanical properties of recycled brick powder engineered cementitious composites(ECC), and provide basis and reference for the research and promotion of recycled brick powder ECC, the effect of polyvinyl alcohol(PVA)fiber content on the flow properties and mechanical properties of recycled brick powder ECC was analyzed through experimental research. The results show that the replacement of quartz sand by recycled brick powder weakens the mechanical properties of ECC to a certain extent. In the range of 1.25%-2.0%, as the volume of fiber content increases, the fluidity of the recycled brick powder ECC mixture decreases. The flexural strength increases firstly and then decreases, and when the fiber content is 1.75%, the flexural strength is the largest. The compressive strength decreases with the increase of fiber content, and the decrease is the most obvious in the range of 1.5%-1.75%. The squeeze ratio keeps decreasing and the material flexibility increases. The bending strength, bending cracking deflection and ultimate deflection increase with the increase of fiber content, showing better toughness and ductility.The tensile cracking strain and ultimate strain continue increasing with the increase of fiber content, and the tensile strain hardening characteristics are obvious. There is a good linear correlation between the ultimate mid-span deflection in four point bending test and the ultimate strain in uniaxial tensile test of recycled brick powder ECC.

参考文献/References:

[1] LI V C,LEUNG C K Y.Steady-state and Multiple Cracking of Short Random Fiber Composites[J].Journal of Engineering Mechanics,1992,188(11):2246-2264.
[2]MARSHALL D B,COX B N.A J-integral Method for Calculating Steady-state Matrix Cracking Stresses in Composites[J].Mechanics of Materials,1988,7(2):127-133.
[3]徐世烺,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能[J].水利学报,2009,40(9):1055-1063.
XU Shi-lang,CAI Xiang-rong.Experimental Study on Mechanical Properties of Ultra-high Toughness Fiber Reinforced Cementitious Composite[J].Journal of Hydraulic Engineering,2009,40(9):1055-1063.
[4]刘荣涛,朱建辉,朱玮杰,等.建筑废弃黏土砖资源化综合利用综述[J].硅酸盐通报,2016,35(10):3191-3195.
LIU Rong-tao,ZHU Jian-hui,ZHU Wei-jie,et al.Comprehensive Research on Utilizing the Wasted Building Clay Brick[J].Bulletin of the Chinese Ceramic Society,2016,35(10):3191-3195.
[5]吴李国.PVA纤维的应用现状及进展[J].现代纺织技术,2001,9(4):52-54.
WU Li-guo.The Application Status and Progress of PVA Fiber[J].Advanced Textile Technology,2001,9(4):52-54.
[6]刘 洋,欧忠文,胡志德,等.基于Design-Expert的全风积沙超高韧性混凝土纤维混杂设计试验[J].粉煤灰综合利用,2019(4):26-29.
LIU Yang,OU Zhong-wen,HU Zhi-de,et al.Fiber Hybrid Design of Super-high Toughness Concrete of Full-aeolian Sand by Design-Expert[J].Fly Ash Comprehensive Utilization,2019(4):26-29.
[7]张 平,陈 旭,李 凯,等.超高韧性混凝土配合比设计优化及力学性能研究[J].新型建筑材料,2020,47(8):69-72,118.
ZHANG Ping,CHEN Xu,LI Kai,et al.Design Optimization and Mechanics Study of Mixture Ratio of Super High Toughness Concrete[J].New Building Materials,2020,47(8):69-72,118.
[8]随志博.生态型超高韧性水泥基复合材料的基本力学性能研究[D].郑州:郑州大学,2020.
SUI Zhi-bo.Research on the Mechanical Properties of Ecological Engineering Cementitious Composites(ECO-ECC)[D].Zhengzhou:Zhengzhou University,2020.
[9]高 杰,张 暄,韩乐冰,等.超高韧性水泥基复合材料弯曲韧性研究[J].硅酸盐通报,2020,39(4):1050-1056.
GAO Jie,ZHANG Xuan,HAN Le-bing,et al.Study on Bending Toughness of Ultra-high Toughness Cementitious Composites[J].Bulletin of the Chinese Ceramic Society,2020,39(4):1050-1056.
[10]赵 昕,徐世烺,李庆华.高温后超高韧性水泥基复合材料冲击破碎分形特征分析[J].土木工程学报,2019,52(2):44-55.
ZHAO Xin,XU Shi-lang,LI Qing-hua.Fractal Characteristics of Fire-damaged Ultra High Toughness Cementitious Composite After Impact Loading[J].China Civil Engineering Journal,2019,52(2):44-55.
[11]白文琦,吕 晶,杜 强,等.PVA纤维增强型水泥基复合材料高温后力学性能试验[J].建筑科学与工程学报,2015,32(4):86-91.
BAI Wen-qi,LU Jing,DU Qiang,et al.Experiment on Mechanical Behaviors of PVA Fiber Reinforced Cementitious Composite After High Temperature[J].Journal of Architecture and Civil Engineering,2015,32(4):86-91.
[12]赵铁军,毛新奇,张 鹏.应变硬化水泥基复合材料的干燥收缩与开裂[J].东南大学学报:自然科学版,2006,36(增2):269-273.
ZHAO Tie-jun,MAO Xin-qi,ZHAGN Peng.Restrained Drying Shrinkage and Cracks of PVA-ECC[J].Journal of Southeast University:Natural Science Edition,2006,36(S2):269-273.
[13]苗海强,高启程,王 任.PVA-ECC材料的力学与收缩性能研究[J].塑料科技,2020,48(8):23-27.
MIAO Hai-qiang,GAO Qi-cheng,WANG Ren.Study on Mechanical and Shrinkage Properties of PVA-ECC Materials[J].Plastics Science and Technology,2020,48(8):23-27.
[14]周磊生,高 杰,宋 杰,等.超高韧性水泥基复合材料干燥收缩性能试验研究[J].四川建筑科学研究,2020,46(4):68-74.
ZHOU Lei-sheng,GAO Jie,SONG Jie,et al.Investigation on Dry Shrinkage Properties of Ultra-high Toughness Cementitious Composites[J].Sichuan Building Science,2020,46(4):68-74.
[15]GAHMARAN M,LACHEMI M,LI V C.Assessing the Durability of Engineered Cementitious Composites Under Freezing and Thawing Cycles[J].Journal of ASTM International,2009,6(7):102406.
[16]XU S L,CAI X H.Mechanics Behavior of Ultra High Toughness Cementitious Composites After Freezing and Thawing[J].Journal of Wuhan University of Technology:Materials Science,2010,25(3):509-514.
[17]熊志卿,欧忠文,王经纬,等.多尺度混杂PVA纤维对喷射超高韧性水泥基复合材料流动性及力学性能的影响[J].混凝土,2018(11):71-73,77.
XIONG Zhi-qing,OU Zhong-wen,WANG Jing-wei,et al.Influence of Hybrid PVA Fibers on the Fluidity and Mechanical Properties of Sprayed Ultra High Toughness Cementitious Composites[J].Concrete,2018(11):71-73,77.
[18]刘曙光,王志伟,闫长旺,等.基于灰色理论的 PVA-FRCC抗盐冻性能分析[J].建筑科学与工程学报,2014,31(1):63-67.
LIU Shu-guang,WANG Zhi-wei,YAN Chang-wang,et al.Salt Frozen Resistance Performance Analysis of PVA-FRCC Based on Grey Theory[J].Journal of Architecture and Civil Engineering,2014,31(1):63-67.
[19]赵亚楠.纳米粒子PVA纤维水泥基复合材料力学性能研究[D].郑州:郑州大学,2016.
ZHAO Ya-nan.Study on Mechanical Properties of PVA Fiber Reinforced Cementitious Composite Containing Nano-particles[D].Zhengzhou:Zhengzhou University,2016.
[20]侯利军.超高韧性水泥基复合材料弯曲性能及剪切性能试验研究[D].大连:大连理工大学,2012.
HOU Li-jun.Experimental Investigation on Flexural and Shear Behaviors of Ultrahigh Toughness Cementitious Composite[D].Dalian:Dalian University of Technology,2012.
[21]肖 杰,叶 明,李俊禧,等.超高韧性水泥基混凝土拉伸性能影响因素试验研究[J].广东建材,2019,35(5):3-7.
XIAO Jie,YE Ming,LI Jun-xi,et al.Experimental Study on Influencing Factors of Tensile Properties of Ultra-high Toughness Cement-based Concrete[J].Guangdong Building Materials,2019,35(5):3-7.
[22]金 航.超高性能混凝土拉伸性能实验研究[D].杭州:浙江工业大学,2020.
JIN Hang.Experimental Study on Tensile Properties of Ultra-high Performance Concrete[D].Hangzhou:Zhejiang University of Technology,2020.
[23]蔡向荣.超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D].大连:大连理工大学,2010.
CAI Xiang-rong.The Basic Mechanical Performance and Strain Hardening Process Theoretical Analysis of Ultra High Toughness Cementitious Composites[D].Dalian:Dalian University of Technology,2010.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-03-21
基金项目:河南省重点研发与推广专项项目(202102310255); 河南省交通运输科技计划项目(20200410)
作者简介:元成方(1983-),男,河南郑州人,高级工程师,工学博士,博士后,E-mail:chengfang1102@zzu.edu.cn。
更新日期/Last Update: 2021-09-01