|本期目录/Table of Contents|

[1]申玉生,甘雨航,资晓鱼,等.基于离散-连续耦合方法的圆砾地层超深地连墙施工力学行为研究[J].建筑科学与工程学报,2022,39(05):251-261.[doi:10.19815/j.jace.2021.04093]
 SHEN Yu-sheng,GAN Yu-hang,ZI Xiao-yu,et al.Study on Construction Mechanical Behavior of Ultra-deep Diaphragm Wall in Gravel Stratum Based on Discrete-continuous Coupling Method[J].Journal of Architecture and Civil Engineering,2022,39(05):251-261.[doi:10.19815/j.jace.2021.04093]
点击复制

基于离散-连续耦合方法的圆砾地层超深地连墙施工力学行为研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年05期
页码:
251-261
栏目:
基础工程
出版日期:
2022-09-30

文章信息/Info

Title:
Study on Construction Mechanical Behavior of Ultra-deep Diaphragm Wall in Gravel Stratum Based on Discrete-continuous Coupling Method
文章编号:
1673-2049(2022)05-0251-11
作者:
申玉生1,甘雨航1,资晓鱼2,董 俊3,闵 鹏1,张逸飞1,王 进4
(1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031; 2. 中国科学院光电技术研究所,四川 成都 610209; 3. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063; 4. 中国中铁四局集团城市轨道交通工程分公司,安徽 合肥 230022)
Author(s):
SHEN Yu-sheng1, GAN Yu-hang1, ZI Xiao-yu2, DONG Jun3, MIN Peng1, ZHANG Yi-fei1, WANG Jin4
(1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 4. Urban Rail Transit Engineering Branch Co., Ltd. of CTCE Group, Hefei 230022, Anhui, China)
关键词:
地铁工程 施工力学行为 离散-连续耦合方法 地下连续墙 圆砾地层
Keywords:
subway engineering construction mechanical behavior discrete-continuous coupling method diaphragm wall gravel stratum
分类号:
TU753
DOI:
10.19815/j.jace.2021.04093
文献标志码:
A
摘要:
依托昆明轨道交通4号线火车北站工程(三线换乘站),推导了离散元-有限差分耦合算法,并对圆砾地层中单幅超深(70 m)地下连续墙施工全过程的力学行为展开研究。结果表明:超深地下连续墙成槽施工阶段地层水平应力与竖向应力不同程度下降,槽壁向槽内卸荷变形,黏性土层在槽段拐角附近有土拱形成,区域内应力增加,圆砾地层土拱效应不明显; 成槽阶段槽壁累计水平变形由大到小依次为圆砾地层、下伏地层、上覆土体,水平最大位移约为15.8 mm,最大地表沉降约为9 mm; 在混凝土浇筑阶段,地层应力在混凝土压力挤压作用下均出现不同程度增长,槽壁向槽外反向内挤变形,地表向上隆起变形,并在混凝土硬化阶段逐渐收敛; 研究成果应用于实际工程取得了良好成槽效果,可为同类地下连续墙设计施工提供一定参考。
Abstract:
Based on the Kunming Rail Transit Line 4 north railway station engineering(three-line transfer), the coupling algorithm of discrete element method(DEM)and finite difference method(FDM)was derived, and the mechanical behavior of the whole construction process of a single ultra-deep(70 m)diaphragm wall in gravel stratum was studied. The results show that the horizontal and vertical stresses of the stratum decrease in different degrees during the groove formation stage of ultra deep diaphragm wall, and the groove wall is unloaded and deforms into the groove. In the cohesive soil layer, soil arch is formed near the corners of the trough section, the stress in the area increases, and the soil arching effect of the gravel stratum is not obvious. The cumulative horizontal deformation of the groove wall during the groove formation stage from large to small is gravel stratum, underlying stratum and overlying soil. The maximum horizontal displacement is about 15.8 mm and the maximum ground settlement is about 9 mm. During the concrete pouring stage, the stratum stress rises to various degrees under the action of the concrete pressure squeezing. The groove wall squeezes and deforms toward outside, the ground uplifts and deforms, and gradually converge in the concrete hardening stage.The research results have been applied to the actual engineering and achieved good groove formation effect, which can provide certain reference for the design and construction of similar diaphragm walls.

参考文献/References:

[1] 韩泽亮.软土地区超深基坑施工对周边环境的影响分析[J].山西建筑,2020,46(14):1-5.
HAN Ze-liang.Influence of Super Deep Foundation Pit Construction on Surrounding Environment in Soft Soil Area[J].Shanxi Architecture,2020,46(14):1-5.
[2]彭 斌,袁 杰,张小勇,等.圆砾地层深基坑地下连续墙变形特性分析[J].土木工程学报,2017,50(增1):65-69.
PENG Bin,YUAN Jie,ZHANG Xiao-yong,et al.Analysis on Deformation of Diaphragm Wall in Round Gravel Strata[J].China Civil Engineering Journal,2017,50(S1):65-69.
[3]李佳宇,张子新.圆砾层地铁车站深基坑变形特征三维数值分析[J].地下空间与工程学报,2012,8(1):71-76,110.
LI Jia-yu,ZHANG Zi-xin.3D Numerical Analysis of Deep Station Excavation Constructed in Round Gravel Strata[J].Chinese Journal of Underground Space and Engineering,2012,8(1):71-76,110.
[4]吴凤元,樊赟赟,梁 力,等.桩-钢支撑支护基坑颗粒流数值模拟分析[J].济南大学学报(自然科学版),2020,34(1):10-14.
WU Feng-yuan,FAN Yun-yun,LIANG Li,et al.Particle Flow Numerical Simulation Analysis of Pile-steel Tube Support Foundation Pit[J].Journal of University of Jinan(Science and Technology),2020,34(1):10-14.
[5]李 博,王贵和,吕高峰,等.导管法水下混凝土灌注厚度的颗粒流模拟[J].建筑科学与工程学报,2020,37(2):118-126.
LI Bo,WANG Gui-he,LYU Gao-feng,et al.Particle Flow Simulation of Underwater Concrete Filling Thickness by Tremie Method[J].Journal of Architecture and Civil Engineering,2020,37(2):118-126.
[6]周秋爽.基于三维离散-连续耦合方法的新建隧道下穿既有盾构隧道变形特性研究[D].北京:北京交通大学,2019.
ZHOU Qiu-shuang.Research on Deformation Characteristics of Existing Shield Tunnel with New Tunnel Construction Based on 3D Discrete-continuous Coupling Method[D].Beijing:Beijing Jiaotong University,2019.
[7]申志福,蒋明镜,郑 敏.离散元在刚性挡墙基坑开挖数值模拟中的应用[J].兰州大学学报(自然科学版),2011,47:162-168.
SHEN Zhi-fu,JIANG Ming-jing,ZHENG Min.Application of DEM Analyses for Simulation of Pit Excavation Retained with Rigid Wall[J].Journal of Lanzhou University(Natural Sciences),2011,47:162-168.
[8]周 健,李 飞,张 姣,等.复合土钉墙支护基坑颗粒流数值模拟研究[J].同济大学学报(自然科学版),2011,39(7):966-971.
ZHOU Jian,LI Fei,ZHANG Jiao,et al.Study of PFC Numerical Simulation of Soil Nailing Wall Support Excavation[J].Journal of Tongji University(Natural Science),2011,39(7):966-971.
[9]贾敏才,王 磊,周 健.基坑开挖变形的颗粒流数值模拟[J].同济大学学报(自然科学版),2009,37(5):612-617.
JIA Min-cai,WANG Lei,ZHOU Jian.Simulation of Soil Deformation Due to Pit Excavation with Particle Flow Code[J].Journal of Tongji University(Natural Science),2009,37(5):612-617.
[10]王 俊.土压平衡盾构掘进对上软下硬地层扰动研究[D].成都:西南交通大学,2017.
WANG Jun.Study on the Disturbance Induced by EPB Shield Tunnelling in Mixed Ground with Soft Sand Lying on Hard Rock[D].Chengdu:Southwest Jiaotong University,2017.
[11]王明年,曾正强,赵银亭,等.级配不良卵石深基坑地表及支护变形规律研究[J].铁道科学与工程学报,2019,16(3):646-653.
WANG Ming-nian,ZENG Zheng-qiang,ZHAO Yin-ting,et al.Study on Deformation Rules of Earth's Surface and Support Structure for Deep Foundation Pit in Bad Gradation Pebble Stratum[J].Journal of Railway Science and Engineering,2019,16(3):646-653.
[12]王 俊,何 川,李栋林,等.砂卵石地层地下水对盾构隧道影响的离散元流固耦合分析[J].隧道建设,2016,36(6):710-716.
WANG Jun,HE Chuan,LI Dong-lin,et al.Discrete Element Solid-fluid Coupling Analysis of Influence of Groundwater on Shield Tunnel in Sandy-cobble Strata[J].Tunnel Construction,2016,36(6):710-716.
[13]王振飞.北京砂卵石地层大直径泥水加压平衡盾构适应性研究[D].北京:北京交通大学,2014.
WANG Zhen-fei.Research on Suitability of Large-diameter Slurry Shield in Sand and Gravel Formations of Beijing[D].Beijing:Beijing Jiaotong University,2014.
[14]童建军.成都地区卵石地层深基坑设计关键技术研究[D].成都:西南交通大学,2014.
TONG Jian-jun.Research on the Key Design Technologies of the Deep Foundation Pit in Cobble Stratum in Chengdu Area[D].Chengdu:Southwest Jiaotong University,2014.
[15]魏龙海.基于颗粒离散元法的卵石层中成都地铁施工力学研究[D].成都:西南交通大学,2009.
WEI Long-hai.Study on the Mechanical Behavior of Subway Construction in Cobble Stratum Based on Granular Discrete Element Method[D].Chengdu:Southwest Jiaotong University,2009.
[16]Itasca Consulting Group Inc..FLAC3D Version 6.0 Documentation[M].Mexico:ICG,2017.
[17]LINGS M L,NG C W W,NASH D F T,et al.The Lateral Pressure of Wet Concrete in Diaphragm Wall Panels Cast Under Bentonite[J].Proceedings of the Institution of Civil Engineers-geotechnical Engineering,1994,107(3):163-172.

相似文献/References:

[1]周念清,高逸群,黄钟晖,等.采用改进区间层次分析法评估地铁工程地下水风险[J].建筑科学与工程学报,2017,34(06):21.
 ZHOU Nian-qing,GAO Yi-qun,HUANG Zhong-hui,et al.Groundwater Risk Assessment by Interval-based Improvement of Analytic Hierarchy Process in Subway Project[J].Journal of Architecture and Civil Engineering,2017,34(05):21.
[2]李大军,何鹏飞,宋克志,等.复杂硐室交叉口转向挑顶施工力学行为研究[J].建筑科学与工程学报,2023,40(02):172.[doi:10.19815/j.jace.2022.11120]
 LI Dajun,HE Pengfei,SONG Kezhi,et al.Research on construction mechanical behavior of turning overhanging at intersection of complex chamber[J].Journal of Architecture and Civil Engineering,2023,40(05):172.[doi:10.19815/j.jace.2022.11120]

备注/Memo

备注/Memo:
收稿日期:2021-04-21
基金项目:国家重点研发计划项目(2019YFC0605104); 国家自然科学基金项目(51778540)
作者简介:申玉生(1976-),男,山东临朐人,教授,博士研究生导师,工学博士,E-mail:sys1997@163.com。
更新日期/Last Update: 2022-09-30