|本期目录/Table of Contents|

[1]吴洪梅,申 波,刘 凯,等.基于2D随机骨料模型的C80混凝土参数分析[J].建筑科学与工程学报,2023,40(01):28-37.[doi:10.19815/j.jace.2021.09112]
 WU Hongmei,SHEN Bo,LIU Kai,et al.Parameters analysis of C80 concrete based on 2D random aggregate model[J].Journal of Architecture and Civil Engineering,2023,40(01):28-37.[doi:10.19815/j.jace.2021.09112]
点击复制

基于2D随机骨料模型的C80混凝土参数分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年01期
页码:
28-37
栏目:
建筑材料
出版日期:
2023-01-10

文章信息/Info

Title:
Parameters analysis of C80 concrete based on 2D random aggregate model
文章编号:
1673-2049(2023)01-0028-10
作者:
吴洪梅1,2,申 波1,2,刘 凯1,2,卢亚琴1,2,杨 方3
(1. 贵州大学 空间结构研究中心,贵州 贵阳 550003; 2. 贵州大学 贵州省结构工程重点实验室,贵州 贵阳 550003; 3. 六盘水师范学院 矿业与土木工程学院,贵州 六盘水 553000)
Author(s):
WU Hongmei1,2, SHEN Bo1,2, LIU Kai1,2, LU Yaqin1,2, YANG Fang3
(1. Research Center of Space Structures, Guizhou University, Guiyang 550003, Guizhou, China; 2. Key Laboratory of Structural Engineering of Guizhou Province, Guiyang 550003, Guizhou, China; 3. School of Mining and Civil Engineering, Liupanshui Normal University, Liupanshui 553000, Guizhou, China)
关键词:
粗骨料 分布 形状 含量 界面过渡区 孔隙率
Keywords:
coarse aggregate distribution shape content interface transition zone porosity.
分类号:
TU528.31
DOI:
10.19815/j.jace.2021.09112
文献标志码:
A
摘要:
利用DIGIMAT和ABAQUS联合建立细观混凝土2D随机骨料模型,模拟了粗骨料的分布、形状、含量以及界面过渡区性能、孔隙率对C80高强度混凝土立方体抗压强度、轴心抗压强度、弹性模量和劈裂抗拉强度的影响,并将模拟结果与各参数对低强度混凝土的影响进行比较。结果表明:粗骨料的分布模式对混凝土的基本力学性能几乎没有影响,不同分布形式下混凝土立方体抗压强度最大相对误差为4.18%; 不同形状的粗骨料对混凝土力学性能有着不同的影响,圆形和椭圆形状粗骨料的模拟结果与试验值更为接近; 不同骨料含量下混凝土立方体抗压强度呈现出先减小后增大的趋势,轴心抗压强度则是先减小后增加再减小,劈裂抗拉强度在粗骨料含量为33%时达到最大值4.61 MPa,之后便逐渐降低; 随着孔隙率的增加,混凝土立方体抗压强度、轴心抗压强度和弹性模量均逐渐减小,劈裂抗拉强度在孔隙率为1.5%时降低较多,孔隙率为2%时有所上升。
Abstract:
The 2D random aggregate model of meso-concrete was established by DIGIMAT and ABAQUS. The effects of the distribution, shape and content of coarse aggregate, the performance of interfacial transition zone and porosity on the cubic compressive strength, axial compressive strength, elastic modulus and splitting tensile strength of C80 high strength concrete were simulated. The simulation results were compared with the effects of various parameters on low strength concrete. The results show that the distribution pattern of coarse aggregate has little effect on the basic mechanical properties of concrete, and the maximum relative error of compressive strength of concrete cube with different distribution patterns is 4.18%. Different coarse aggregate shapes have different effects on the mechanical properties of concrete. The simulation results of circular and elliptical coarse aggregates are closer to the experimental values. The compressive strength of concrete cubes with different aggregate contents shows a trend of decreasing first and then increasing. The axial compressive strength decreases first, then increases and then decreases. The splitting tensile strength reaches a maximum of 4.61 MPa when the coarse aggregate content is 33%, and then gradually decreases. With the increase of porosity, the compressive strength, axial compressive strength and elastic modulus of concrete cube decrease gradually. The splitting tensile strength decreases more when the porosity is 1.5%, and increases when the porosity is 2%.

参考文献/References:

[1] PIOTROWSKA E,MALECOT Y,KE Y.Experimental investigation of the effect of coarse aggregate shape and composition on concrete triaxial behavior[J].Mechanics of Materials,2014,79:45-57.
[2]CUI W,YAN W S,SONG H F,et al.DEM simulation of SCC flow in L-box set-up:influence of coarse aggregate shape on SCC flowability[J].Cement and Concrete Composites,2020,109:103558.
[3]WANG Z S,WANG L J,SU H L,et al.Optimization of coarse aggregate content based on efficacy coefficient method[J].Journal of Wuhan University of Technology(Materials Science),2011,26(2):330-335.
[4]韩宇栋,张 君,王振波.粗骨料体积分数对混凝土弹模和抗压强度的影响[J].哈尔滨工业大学学报,2013,45(4):84-91.
HAN Yudong,ZHANG Jun,WANG Zhenbo.Effect of volume fraction of coarse aggregate on elastic modulus and compressive strength of concrete[J].Journal of Harbin Institute of Technology,2013,45(4):84-91.
[5]黄 伟,丁 宇,吕柏颖,等.粗骨料形状对水工混凝土强度性能影响试验研究[J].水力发电,2020,46(8):104-108,113.
HUANG Wei,DING Yu,LÜ Boying,et al.Experimental study on the influence of coarse aggregate shape on strength properties of hydraulic concrete[J].Water Power,2020,46(8):104-108,113.
[6]王亚红,惠弘毅,李宗利.骨料-砂浆界面过渡区力学特性试验[J].混凝土,2020(1):19-21,26.
WANG Yahong,HUI Hongyi,LI Zongli.Experiment of mechanics properties of interfacial transition zone between of aggregate and mortar[J].Concrete,2020(1):19-21,26.
[7]RAMANIRAKA M,RAKOTONARIVO S,PAYAN C,et al.Effect of the interfacial transition zone on ultrasonic wave attenuation and velocity in concrete[J].Cement and Concrete Research,2019,124:105809.
[8]贾金青,胡玉龙,王东来,等.混凝土抗压强度与孔隙率关系的研究[J].混凝土,2015(10):56-59,63.
JIA Jinqing,HU Yulong,WANG Donglai,et al.Effects of porosity on the compressive strength of concrete[J].Concrete,2015(10):56-59,63.
[9]LI L G,FENG J J,ZHU J,et al.Pervious concrete:effects of porosity on permeability and strength[J].Magazine of Concrete Research,2021,73(2):69-79.
[10]杜修力,韩亚强,金 浏,等.骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J].水利学报,2015,46(6):631-639.
DU Xiuli,HAN Yaqiang,JIN Liu,et al.Statistical investigation on effects of aggregate distribution on concrete compression strength and the descending part of stress-strain curve[J].Journal of Hydraulic Engineering,2015,46(6):631-639.
[11]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用[J].水利学报,2006,37(6):662-667,673.
DU Chengbin,SUN Liguo.Numerical simulation of concrete aggregates with arbitrary shapes and its application[J].Journal of Hydraulic Engineering,2006,37(6):662-667,673.
[12]胡大琳,张立兴,陈定市.混凝土三维细观随机模型的建立和有限元剖分[J].交通运输工程学报,2018,18(5):1-11.
HU Dalin,ZHANG Lixing,CHEN Dingshi.Establishment and finite element mesh of 3D mesoscopic stochastic models of concrete[J].Journal of Traffic and Transportation Engineering,2018,18(5):1-11.
[13]邢心魁,刘 晶,孙冠晓,等.粗骨料形状对混凝土力学性质的影响[J].混凝土,2014(2):61-63,67.
XING Xinkui,LIU Jing,SUN Guanxiao,et al.Influence of different shape of coarse aggregate on concrete mechanical properties[J].Concrete,2014(2):61-63,67.
[14]杜晓奇,司 政,黄灵芝,等.粗骨料颗粒形态和体积分数对混凝土单轴压缩性能的影响研究[J].应用力学学报,2020,37(4):1828-1834,1879.
DU Xiaoqi,SI Zheng,HUANG Lingzhi,et al.Study on the influence of coarse aggregate particle shape and volume fraction on the uniaxial compressive properties of concrete[J].Chinese Journal of Applied Mechanics,2020,37(4):1828-1834,1879.
[15]HUANG Q H,JIANG Z L,ZHANG W P,et al.Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation[J].Construction and Building Materials,2012,37:27-35.
[16]施惠生,孙丹丹,吴 凯.混凝土界面过渡区微观结构及其数值模拟方法的研究进展[J].硅酸盐学报,2016,44(5):678-685.
SHI Huisheng,SUN Dandan,WU Kai.Advances in microstructure and numerical simulation of interfacial transition zone[J].Journal of the Chinese Ceramic Society,2016,44(5):678-685.
[17]黄景琦,金 浏,杜修力.界面特性及骨料分布对混凝土破坏模式影响[J].土木建筑与环境工程,2011,33(增2):38-41.
HUANG Jingqi,JIN Liu,DU Xiuli.The Impact of interface characteristic and aggregate distribution on failure modes of concrete[J].Journal of Civil,Architectural & Environmental Engineering,2011,33(S2):38-41.
[18]王环玲,沙 聪,徐卫亚,等.考虑孔隙率和不均匀系数的土石混合体颗粒流分析[J].河海大学学报(自然科学版),2019,47(3):251-258.
WANG Huanling,SHA Cong,XU Weiya,et al.Particle flow analysis of soil-rock mixture considering porosity and heterogeneity[J].Journal of Hohai University(Natural Sciences),2019,47(3):251-258.
[19]俞 缙,穆 康,李 宏,等.砂岩渗透性演化特性的孔隙率分布细观模拟分析[J].工程力学,2014,31(11):124-131.
YU Jin,MU Kang,LI Hong,et al.The porosity distribution mesoscopic simulation analysis of the permeability evolution property of sandstone[J].Engineering Mechanics,2014,31(11):124-131.
[20]田梦云,张 恩,曹瑞东,等.基于细观尺度的混凝土单轴力学性能仿真计算分析[J].应用力学学报,2020,37(3):975-981,1384.
TIAN Mengyun,ZHANG En,CAO Ruidong,et al.Meso-scale simulation analysis of uniaxial mechanical behavior of concrete[J].Chinese Journal of Applied Mechanics,2020,37(3):975-981,1384.
[21]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89.
LIU Guangting,WANG Zongmin.Numerical simulation study of fracture of concrete materials using random aggregate model[J].Journal of Tsinghua University(Science and Technology),1996,36(1):84-89.
[22]WANG Z M,KWAN A K H,CHAN H C.Mesoscopic study of concrete I:generation of random aggregate structure and finite element mesh[J].Computers & Structures,1999,70(5):533-544.
[23]KWAN A K H,WANG Z M,CHAN H C.Mesoscopic study of concrete II:nonlinear finite element analysis[J].Computers & Structures,1999,70(5):545-556.
[24]WALRAVEN J C,REINHARDT H W.Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading[J].Heron,1981,26(1A):26-35.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-09-29
基金项目:国家自然科学基金项目(51468007); 贵州省科技计划项目(黔科合基础[2018]1038)
作者简介:吴洪梅(1995-),女,工学硕士研究生,E-mail:whm2019@foxmail.com。
通信作者:卢亚琴(1980-),女,工学博士,讲师,E-mail:yqlu@gzu.edu.cn。
更新日期/Last Update: 2023-01-01