|本期目录/Table of Contents|

[1]巴光忠,郑欣欣,刘才玮,等.火灾后锈蚀混凝土梁抗弯性能试验研究[J].建筑科学与工程学报,2024,41(01):138-145.[doi:10.19815/j.jace.2022.04005]
 BA Guangzhong,ZHENG Xinxin,LIU Caiwei,et al.Experimental study on flexural performance of corroded reinforced concrete beams after fire exposure[J].Journal of Architecture and Civil Engineering,2024,41(01):138-145.[doi:10.19815/j.jace.2022.04005]
点击复制

火灾后锈蚀混凝土梁抗弯性能试验研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年01期
页码:
138-145
栏目:
建筑结构
出版日期:
2024-01-20

文章信息/Info

Title:
Experimental study on flexural performance of corroded reinforced concrete beams after fire exposure
文章编号:
1673-2049(2024)01-0138-08
作者:
巴光忠1,郑欣欣1,刘才玮2,刘 浩2
(1. 上海海事大学 海洋科学与工程学院,上海 201306; 2. 青岛理工大学 土木工程学院,山东 青岛 266033)
Author(s):
BA Guangzhong1, ZHENG Xinxin1, LIU Caiwei2, LIU Hao2
(1.College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; 2.College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China)
关键词:
钢筋锈蚀 火灾 温度场 破坏模式 残余抗弯承载力
Keywords:
corroded reinforcement fire temperature field failure mode residual bending bearing capacity
分类号:
TU312
DOI:
10.19815/j.jace.2022.04005
文献标志码:
A
摘要:
为研究既有锈蚀混凝土结构受火后的残余力学性能,设计并制作了9根钢筋混凝土梁,通过电化学加速锈蚀的方法获得不同锈蚀程度(目标锈蚀率为5%和15%)的混凝土梁,然后按照ISO834标准升温曲线进行不同受火时间(1 h和2 h)的火灾试验,最后对所有混凝土梁进行静力加载试验。结果表明:锈蚀钢筋混凝土梁的破坏过程和模式与普通混凝土梁相似,表现为适筋弯曲破坏,相比普通梁,其荷载-挠度曲线会发生下移并表现出带裂缝工作阶段和破坏阶段特征,挠度变形也更大; 对于经历不同受火时间的混凝土梁,钢筋锈蚀均明显降低其屈服荷载,但常温下钢筋锈蚀对混凝土梁极限荷载的影响相对较小,火灾作用明显降低混凝土梁的极限承载力; 受火后微锈蚀梁的残余承载力变化规律与未锈蚀梁相似,钢筋锈蚀几乎不会削弱构件的抗弯承载力; 对于严重锈蚀梁,由于锈蚀引起截面削弱以及锈胀裂缝的影响,锈蚀混凝土梁在火灾下经历的最高温度更高,火灾后其残余极限承载力加速下降,相同受火时间下锈蚀率为13.5%的混凝土梁残余极限承载力比锈蚀率为6.2%的混凝土梁下降15.9%。
Abstract:
In order to study the residual mechanical properties of existing concrete structures after fire, 9 reinforced concrete beams were designed and fabricated. The corroded concrete beams with different corrosion degrees(target corrosion degree was 5% and 15%)were obtained by electrochemical accelerated corrosion tests. The fire tests were conducted for different fire durations(1 h and 2 h)according to the ISO834 standard heating curve. Finally, the static loading tests were conducted on all concrete beams. The results show that the failure process and mode of the corroded reinforced concrete beams are similar to those of the ordinary concrete beams, which shows bending failure mode. Compared to ordinary beams, their load-deflection curve will shift downwards and exhibit characteristics of working with cracks and failure stages, and the deflection deformation is also greater. For concrete beams that have undergone different fire exposure time, steel corrosion significantly reduces their yield load, but the effect of steel corrosion on the ultimate load of concrete beams at room temperature is relatively small. The effect of fire significantly reduces the ultimate bearing capacity of concrete beams. The variation pattern of residual bearing capacity of slightly corroded beams after fire is similar to that of non corroded beams, and the corrosion of steel bars hardly weakens the bending bearing capacity of the components. For severely corroded beams, due to the weakening of the cross-section caused by corrosion and the influence of rust expansion cracks, the highest temperature experienced by corroded concrete beams under fire is higher, and their residual ultimate bearing capacity accelerates to decrease after the fire. The residual ultimate bearing capacity of concrete beam with corrosion rate of 13.5% for the same fire exposure time is 15.9% lower than that of concrete beam with corrosion rate of 6.2%.

参考文献/References:

[1] 张玉涛,马 婷,林 姣,等.2007—2016年全国重特大火灾事故分析及时空分布规律[J].西安科技大学学报,2017,37(6):829-836.
ZHANG Yutao,MA Ting,LIN Jiao,et al.Analysis of fire incidents and characteristics of spatio-temporal distributions for serious fires from 2007 to 2016 in China[J].Journal of Xi'an University of Science and Technology,2017,37(6):829-836.
[2]MEHTA P K,BURROWS R W.Building durable structures in the 21st century[J].Indian Concrete Journal,2001,75(7):437-443.
[3]孙晓燕,王海龙,于凤荣.锈损不锈钢钢筋混凝土梁受弯性能退化试验研究[J].建筑结构学报,2021,42(6):160-168.
SUN Xiaoyan,WANG Hailong,YU Fengrong.Experimental study on degradation of flexural performance of corroded stainless steel bars reinforced concrete beam[J].Journal of Building Structures,2021,42(6):160-168.
[4]MAADDAWY T E,SOUDKI K,TOPPER T.Long-term performance of corrosion-damaged reinforced concrete beams[J].ACI Structural Journal,2005,102(5):649-656.
[5]DU Y,CLARK L A,CHAN A.Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams[J].ACI Structural Journal,2007,104(3):285-293.
[6]JNAID F,ABOUTAHA R S.Residual flexural strength of corroded reinforced concrete beams[J].Engineering Structures,2016,119:198-216.
[7]SOBHAN K,REDDY D V,MARTINEZ F.Fire resistance of corroded high-strength structural concrete[J].Journal of Structural Fire Engineering,2020,12(1):17-34.
[8]刘 文.锈蚀钢筋混凝土梁高温性能与残余承载力试验研究[D].青岛:青岛理工大学,2018.
LIU Wen.Experimental research on high temperature performance and residual bearing capacity of RC beams with corrosion damage[D].Qingdao:Qingdao University of Tehcnology,2018.
[9]BA G Z,MIAO J J,ZHANG W P,et al.Influence of reinforcement corrosion on fire performance of reinforced concrete beams[J].Construction and Building Materials,2019,213:738-747.
[10]PORCARI G L,ZALOK E,ISGOR O.Fire performance of corrosion-damaged reinforced concrete beams[J].Journal of Structural Fire Engineering,2012,3(4):311-326.
[11]王吉祥,刘 文.钢筋混凝土梁受损工况下高温试验研究[J].工程建设,2019,51(7):13-18.
WANG Jixiang,LIU Wen.Experimental study on high temperature performance of corroded reinforced concrete beams[J].Engineering Construction,2019,51(7):13-18.
[12]苗吉军,刘 芳,刘延春,等.考虑海洋环境损伤的钢筋混凝土梁抗火性能试验研究[J].建筑结构学报,2014,35(9):64-71.
MIAO Jijun,LIU Fang,LIU Yanchun,et al.Experimental research on fire resistance performance for RC beams with damages caused by marine environment[J].Journal of Building Structures,2014,35(9):64-71.
[13]TARIQ F,GAIKWAD M,BHARGAVA P.Analysis of behaviour of corroded RC beams exposed to elevated temperatures[J].Journal of Building Engineering,2021,42:102508.
[14]刘 芳.海洋环境损伤后的混凝土梁抗火性能试验研究与数值分析[D].青岛:青岛理工大学,2014.
LIU Fang.Experimental research and numerical simulation on fire resistence performance for R.C.beams with damages caused by marine environment[D].Qingdao:Qingdao University of Technology,2014.
[15]EL MAADDAWY T A,SOUDKI K A.Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete[J].Journal of Materials in Civil Engineering,2003,15(1):41-47.
[16]ZHANG W P,SONG X B,GU X L,et al.Tensile and fatigue behavior of corroded rebars[J].Construction and Building Materials,2012,34:409-417.
[17]混凝土结构试验方法标准:GB 50152—1992[S].北京:中国建筑工业出版社,1992.
Testing methods of concrete structure:GB 50152—1992[S].Beijing:China Architecture & Building Press,1992.
[18]惠云玲,李 荣,林志伸,等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):15-19,58.
HUI Yunling,LI Rong,LIN Zhishen,et al.Experimental studies on the property before and after corrosion of rebars in basic concrete members[J].Industrial Construction,1997,27(6):15-19,58.
[19]KEARSLEY E P,JOYCE A.Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs[J].Journal of the South African Institution of Civil Engineering,2014,56(2):21-29.
[20]BA G Z,ZHANG W P,MIAO J J.Tensile behavior of corroded steel bars at elevated temperatures[J].Journal of Materials in Civil Engineering,2021,33(4):040210128.
[21]TOPCU I B,BOGA A R,DEMIR A.The effect of elevated temperatures on corroded and uncorroded reinforcement embedded in mortar[J].Construction and Building Materials,2010,24(11):2101-2107.

相似文献/References:

[1]马志鸣,赵铁军,巴光忠,等.冻融环境下引气混凝土的抗钢筋锈蚀能力研究[J].建筑科学与工程学报,2014,31(03):85.
 MA Zhi-ming,ZHAO Tie-jun,BA Guang-zhong,et al.Study on Ability of Resistance to Steel Corrosion of Air Entraining Concrete Under Freezethaw Environment[J].Journal of Architecture and Civil Engineering,2014,31(01):85.
[2]王强强,蒋建华.基于气候环境作用的混凝土材料与结构使用寿命预测方法[J].建筑科学与工程学报,2015,32(03):67.
 WANG Qiang-qiang,JIANG Jian-hua.Method for Predicting Service Life of Concrete Materials and Structures Based on Climate Environmental Action[J].Journal of Architecture and Civil Engineering,2015,32(01):67.
[3]延永东,姚昌建,刘荣桂,等.氯盐环境下开裂混凝土耐久性研究进展[J].建筑科学与工程学报,2015,32(04):21.
 YAN Yong-dong,YAO Chang-jian,LIU Rong-gui,et al.Research Progress on Durability of Cracked Concrete Under Chloride Environment[J].Journal of Architecture and Civil Engineering,2015,32(01):21.
[4]陈长坤,张冬.高温作用下钢交错桁架结构侧移简化模型[J].建筑科学与工程学报,2011,28(01):16.
 CHEN Chang-kun,ZHANG Dong.Simplified Model for Lateral Displacement of Steel Staggered-truss Structure Under High Temperature[J].Journal of Architecture and Civil Engineering,2011,28(01):16.
[5]张宇,李宏男,李钢.考虑钢筋锈蚀的震损结构抗震性能评估[J].建筑科学与工程学报,2011,28(04):97.
 ZHANG Yu,LI Hong-nan,LI Gang.Seismic Performance Evaluation of Earthquake Damaged Structures Considering Rebar Corrosion[J].Journal of Architecture and Civil Engineering,2011,28(01):97.
[6]汤红卫,顾 炜.钢筋锈蚀对钢筋混凝土结构固有频率和阻尼比影响的试验研究[J].建筑科学与工程学报,2017,34(06):59.
 TANG Hong-wei,GU Wei.Experimental Study on Effect of Reinforcement Corrosion on Natural Frequency and Damping Ratio of Reinforced Concrete Structures[J].Journal of Architecture and Civil Engineering,2017,34(01):59.
[7]董毓利.火灾时钢筋混凝土板的承载力计算[J].建筑科学与工程学报,2009,26(04):14.
 DONG Yu-li.Calculation of Bearing Capacity of RC Concrete Slabs in Fire[J].Journal of Architecture and Civil Engineering,2009,26(01):14.
[8]周长东,吕西林,金叶,等.火灾高温下玻璃纤维筋的力学性能研究[J].建筑科学与工程学报,2006,23(01):23.
 ZHOU Chang-dong,LU Xi-lin,JIN Ye.Research on Mechanical Behavior of GFRP Bars in High Temperature[J].Journal of Architecture and Civil Engineering,2006,23(01):23.
[9]余志武,唐国庆,丁发兴,等.三面受火钢筋混凝土梁温度场非线性分析[J].建筑科学与工程学报,2005,22(04):11.
 YU Zhi-wu,TANG Guo-qing,DING Fa-xing.Nonlinear analysis of temperature field of reinforced concrete beam with three surfaces exposing to fire[J].Journal of Architecture and Civil Engineering,2005,22(01):11.
[10]宋晓勇,邹银生,涂文戈,等.受火钢筋混凝土柱截面极限承载力研究[J].建筑科学与工程学报,2005,22(04):61.
 Research on ultimate load capacity of cross section of reinforced concrete columns exposing to fire.Research on ultimate load capacity of cross section of reinforced concrete columns exposing to fire[J].Journal of Architecture and Civil Engineering,2005,22(01):61.

备注/Memo

备注/Memo:
收稿日期:2023-04-02
基金项目:国家自然科学基金项目(51708319)
作者简介:巴光忠(1984-),男,工学博士,讲师,E-mail:gzba@shmtu.edu.cn。
通信作者:刘才玮(1983-),男,工学博士,副教授,E-mail:03150053@163.com。
更新日期/Last Update: 2024-01-25