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Abstract: Several in-plane tapered members were analyzed by the simple plastic hinge method.
The stiffness matrix of an I-section tapered element was derived by the finite element method with
the use of superposition principle. In order to predict the locations of plastic hinges formation in
members, an element subjected to bending moments and an axial load was modeled to simulate
these tapered members with different boundary conditions. An additional nodal point was set
after the formation of a plastic hinge was detected within the element. The most reasonable load
and deflection curve could be obtained by using the two elements for each member. One should
pay attention to the problem of direction in the stiffness matrix of a tapered element. The actual
limit load of a beam-column could not be predicted correctly if the possible formation of a plastic
hinge in a member was not considered. The limit load would be overestimated if only one element
was used for a tapered member. The results show that the proposed method can be reasonably
applied to the plastic analysis of frames with tapered members.
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0 Introduction

Tapered members are used popularly in engi-
neering structures, such as ships, automobiles,
airplanes, cranes, bridges, and building frames.
Tapered members can save materials, reduce dead
weight, and beautify the shape of structures. Re-
searches about plastic analyses of tapered members
have been reported in the past™®. However, most
of those studies focus on the elastic behavior of ta-
pered members due to difficulties in obtaining limit
load of a frame with tapered members.

If we can find the location of a plastic hinge in
any member exactly, then, we will precisely know
both the collapse mechanism and the limit load of a
steel frame with tapered members. The location of
a plastic hinge formed in a tapered beam-column is
not easy to predict. Although we can always deter-
mine locations of plastic hinges in a tapered ele-
ment by the finite element method through setting
many fine meshes, it is too tedious by doing so for
a framed structure with many tapered members.

If we know the locations of a plastic hinge pre-
viously, we can stiffen or repair the structure easi-
ly. If we let plastic hinges occur in minor members
on purpose, and prevent main members to form
plastic hinges, then, we probably can protect the
structure when it is subjected to an extreme load-
ing. Hence, we may call these plastic hinges as
“artificial plastic hinges” or “guided plastic hinges”
for protecting structures.

A simple method to predict the location of
plastic hinge in a linearly tapered I-shaped beam-
column is established by the authors in the first
part of this paper. The plastic analysis of steel
frames with tapered members is then carried out in

the later part of this paper.

1 Formulation of Mathematical Model

The stiffness matrix of a tapered beam-column
having a rectangular section is developed first. We
can get the stiffness matrix of a tapered beam-col-
umn that has the I-shape section and the same

width by superposing three stiffness matrixes of

rectangular sections. In other words, by subtrac-
ting two small rectangular sections from the whole
rectangular section as shown in Fig. 1, we can get

the stiffness matrix for a tapered beam-column of I-

-0 oo

Fig. 1 Stiffness Matrix of I-Shape Cross Section Superposed

shape section.

from That of Three Rectangular Cross Sections
1 IREEREERER3NMEREER E
EHEEME
The stiffness matrix may degrade when both ends
of an element are partially plastic. Based on the meth-
od proposed in Reference [4], the stiffness matrix of a
beam-column element with a small head and a big tail

as shown in Fig. 2 is obtained as Eq. (1).
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Fig. 2 Six Degree of Freedom in Tapered Element with
Small Head and Big End
B2 BEEETHABHE

I, is moment of inertia of cross section at the
small end; A, is area of cross section at the small
end.

The stiffness matrix of a beam-column ele-
ment with a big head and a small tail as shown in

Fig. 3 is written in Eq. (2).
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Fig. 3 Six Degree of Freedom in Tapered Element with
Big Head and Small End
3 EREATHNAERE
I, is moment of inertia of cross section at the

big end; A, is area of cross section at the big end.



% 28 W. S. King,et al:Plastic Analysis of Frames with Tapered Members 11
r E(AHI D] _A/,1D2> 7
L
0 w+ sym.
W, +W, ,
0 1 T,
K= (D
7E(A111 DliA/IIDz) E(Aul DliA/,l Dg)
L 0 L
0 CS.t2S,+S, P W.tW, 0 S; +2S; +S;, +
L* L L L*
9 9, , Qe
I 0 i3 Vi 0 I U]C
r E(AH] DI*A,Il D;) ]
L
0 S; +2151, +S,, + sym.
Q. +Q, :
0 L U,
K= 2)
E(AHI Dl 7Ahl Dz) E(AHI D1 7A/‘1 Dz>
- 0 0
L L
O S45,08, P oQta, O 25,05, P
L2 L L L?
0 Wy iWﬁ V;} 0 W,-»,- ijjj T‘;j
All these terms in Eq. (1) and Eq. (2) are ex- , , . U.
U,, - (Ugg 7U36 Ui/ﬁafoz ) (1 7‘01 )
plained as follows / / , 66
s U;=U;=Us;(Q1—p) (1—p1) L 7
Sy =Sy —Ss o) (1—py) , , UL
33 6566‘02 {Ol Ujj:(UGG_UGS%P] )(1_(02)[
S; =S, 56 (1—p2) (T—p1) (3) S _4E1H, 4E1/,, 9Pl 4AP’LP
S, Usy=Uss == Cum— Can T 5 755 000EI,
Sjji(see S/cgipl)(lipg) (8)
S _y _2Ely 251/@ PL_ 26P*L’
IEI, i, 2Pl P’ L woEsTLYM L M 300 25 000ET,
33 — D66 I Icll 1 111+7+m , , Q;G
’ - ! 4) Qu:(QB%*Q%Qi",O))(li,Ol)
66
: ) ZEIHl . ZEI,Il PL  26P%L° S
SgGZSGSZT(/U*T/Ul*BO *m Q(;_Q;z_Qac(lQ pz)(l (9)
Q;j:(Q;i(i_QG%Q ,01>(1 )
T =Ty —Tss7o ) (1—p1)
Tas : ALy, AL, ZPL 14P*L}
, , , Qs =Qss=—Cu— 111+ For
T, =T;=Ts(1—p)(1—p) (5) L L 25 000EL | o3
T B _2EIH1 2EI,,] ) PL  26P%L?
Tjj:(TGG*TG%T o) (1—p) TR T Co— L " 30 25 000EI
, : 4F1,, 4EI/, ZPL 44P2 L3 W,,:(W;; WacW%pz)(l p1
Ty =Tes :T]Cz ——C,y) 25 000EL / / /
- ! (6) W,j:Wj,:Wg(;(l_[()z)(l_p]) (11)
o 2Bl o 2EDL, PL_ 26P*L’ S Wi,
Tse - Tss *T 22 T 221 30 m Wjj - (WGG W<>s W p1 )(1— )



12 EHAFE TRFR

2006

, > 4E1h 2PL . MP'L?
Wey =W =—Co = Con+ 5+ 35 b l |
) } ZEIH1 ZEIh1 PL 2P L}
W36 _WGS _TCZI T 211 % m
Vi
V= (Vi — vazmx1—@>l
V.‘iS

, AEly, — AEL, c. 4 2PL MP'L
Vas =Vas = Co = Conn 75 T35 000ET, oooml
(14)

2ELy, | EL, PL  26P%L®
Vao=Vos == Co = Con =735 3¢ 000ET,
Where
H,
7’1:H;71

D, =1+r(1/2)

1 =1+3r(1/2)+3r5(2/5)+7 (7/20)
Coy=143r(1/3)+3+7(7/30)+ri (1/5) (15)
Co,=1+3r (1/4)+371(2/15) 4+ (1/10)

0 =1+3r(2/3)+372(17/30) +r5 (1/2)
C,=1+3r(1/2)+3r(13/30)+r3(2/5)
Cuy=1+3r(3/0)+3r5(19/30)+3(11/20)

o1 sz are stiffness decay factors of cross sec-

tion at an element’s ends 1 and 2 respectively.

In the simple plastic hinge method, p; and p,
jump from zero to one directly. It means that the
partially plastic effect in sections is not taken into
account in this study.

Some important symbols shown in Fig. 4 are

interpreted as follows

Fig. 4 Linearly Tapered Element of I-Shape
Section with Constant Width
4 TERERKEET
I, is moment of inertia of the small end’s cross
section in a tapered element;I, is moment of inertia
of the big end’s cross section in a tapered element;
Iy, is moment of inertia of a whole rectangular
cross section at the small end in a tapered element

using for superposition; I, is moment of inertia of

two small rectangular cross sections at the small
end in a tapered element using for subtracting su-
perposition; Iy, is moment of inertia of a whole rec-
tangular cross section at the big end in a tapered el-
ement using for superposition; I, is moment of in-
ertia of two small rectangular cross sections at the
big end in a tapered element using for subtracting
superposition. x is between 0 and L.

These coefficients Ci115 Coi1s Cozrs Cips Coop s
Ci» and D, are the same as those coefficients in
Chy/hy) —1.

When r, =0 and r, = 0, these stiffness matrixes in

Eq. (15) by replacing r; with r,,7, =

Eq. (1) and Eq. (2) become the stiffness matrix of
a uniform element. The parameter r, in Eq. (15) is
equal to r for the solid rectangular section of a ta-

pered element.

2 Limit Surface and Initial Yielding
Surface

The limit surface for a wide flange section

bent in strong axis is written as™”

P, M,
P M,

The initial yielding surface for a strong axis

( =1 (16)

bending neglecting residual stress is shown in Fig.

5 and is written ast"

1.20
— Limit surface: (P/P,)"*+M/M,=1.0
................ Initial yielding surface without residual

0.80 stress: P/P,+fM /M,=1.0
O
& .,

040

0 -

Fig.5 Initial Yielding Surface and Limit Surface
of I-Shape Section
B5 ITRSEMNEERTMRRERE
M.
r M

where P is axial load applied in the element; P,, is

+

(17)

v px

squash load at a distance of x from the small end;
M, is bending moment at a distance of x from the

small end; M, is plastic moment at a distance of x
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from the small end; f is shape factor.
These above equations are used for the I-shape

section.

3 Coordinate Transformation Matrix
and Axial Force

Because a tapered element has a big end and a
small end, the stiffness matrix has its own direc-
tion. When the local stiffness matrix transfers to
the global stiffness matrix, the coordinate trans-
formation matrix has to be dealt with carefully.
The angle between the horizontal direction and the
inclined direction of a tapered element as shown in
Fig. 6 can be measured either at the small end or at
the big end. However, the angle is measured at
the small end of a tapered element in this paper.
When the compressive axial force P is taken from
the calculation process in a computer program, it
should be careful either in the type of a big-head-
small-end element or in the type of a small-head-
big-end element. Therefore, the stiffness degrada-
tion principle of a cross section at each end of an el-

ement can be satisfied™ .

Fig. 6 Angle 6 Measured at Small End of Tapered
Element in Coordinate Transformation Matrix

B 6 AARIEHRIERERB BT/ LR 0 (E

4 Mathematical Model for Predicting
the Location of Plastic Hinge

When the most possible location of plastic
hinge is predicted, one element of beam-column
will be then divided into two elements by adding a
new nodal point at this possible location. Hence,
we can use the fewer elements to form a reasonable
load and deflection curve. The following method is

proposed herein to predict the possible location of a

plastic hinge in a tapered member.

Two equations defined by Gere!® are shown

below
_ H, . x-,
Il.—L[lJF(H1 DL] (18)
_ lg(I,/1)
" le(H,/HD (19)

When =1L, Eq. (18) becomes the following
equation

I,/I,=(H,/H,)" (20)

If we take the logarithm of both sides of the a-

bove equation, we can get Eq. (19) after arrange-

ment. Following the same procedure, we can get

Egs. (21) and (22)

_ H,  x-,
A,,—A1[1+<H] 1>L] 21
. lg(AL/AD
" T 1e(H,/H) (22)

Where A, is area of cross section at the big end; A,
is area of cross section at the small end; A, is area
of cross section at the distance x from the small
end; H, is depth of cross section at the big end; H,
is depth of cross section at the small end; I, is mo-
ment of inertia of cross section at the distance x
from the small end; L is length of a tapered mem-
ber;n is 3 for a rectangular section and 2. 1~2.6
for an I-shape section; x is the distance from the
small end of a tapered element along the longitudi-
nal direction.

In 1962, Fogel and Ketter'™ proposed a meth-
od to calculate the deflection of a simply supported
member with constant width and varying depth
subjected to bending moments. They believed that
the yielding section would occur at the position of

L) also

the largest stress. Timoshenko and Gere
explained that the first yielding section would hap-
pen at the location of the largest stress by using a
cantilever beam subjected to a concentrated load at
the free end. Chen and Lui"¥! explained the C,, fac-
tors for many uniform members with different
boundary conditions and loading types. Hence, the
maximum bending moment in a member can be re-
presented. However, these methods are used for a

single member only. Members in frames are not al-

ways simply supported. Nevertheless, it is very
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difficult and almost impossible to find out the loca-
tion of the maximum stress in a cross section for a
beam-column by using the analytical method.

Attalla, et al used a simply supported uniform
beam subjected to end moments to simulate several
beams in different boundary conditions™*. Refer-
ring to their model, a simply supported beam-col-
umn subjected to both end moments and an axial
load is developed to simulate several beam-columns
in different boundary conditions in this paper. The
possible maximum stress occurred in a cross sec-
tion of a tapered element is calculated. Hence, the
possible location of a plastic hinge that may form in
an element can be detected. Several cases are de-
scribed below.
4.1 Uniform Beam

When a simply supported uniform beam is
subjected to bending moments at both ends, the
maximum bending stress usually occurs at the end
of a member, no matter the member is bent in sin-
gle or in double curvature. When a beam is bent in
single curvature with two equal bending moments
at both ends, the maximum bending stress is the
same along a member. The bending stress can be
Therefore,

hinge will occur at the end of a member usually.

expressed by Eq. (23). the plastic

= 23)

Where 5. is bending stress at the distance x from
one end; S, is section modulus at the distance x
from one end.
4.2 Uniform Beam-Column

The position of maximum bending moment in
a uniform member that is subjected to bending mo-
ments and an axial force is at the distance x from
one end. The z in the original equation™ is re-
placed by x in the current Eq. (24). Hence, we get
the following equation

MACOS kL+MB

M, sin kL (24

tan kxr=—

Where
k= +/P/(EI)

Eq. (24) can be applied to a single curvature

or a double curvature bending. Usually, the plastic

hinge may occur at the end of a member in a double
curvature bending.
4.3 Tapered Beam

For a rectangular tapered beam with constant
width and varying height subjected to bending mo-
ments, the moment of inertia of cross section I, at
a distance of x from the small end can be expressed
by Eq. (18); the area of cross section A, can be ex-
pressed by Eq. (21). Hence, these equations are
suitable for the I-shape section and the rectangular
section. The bending moment M, at the distance of
x from the small end can be expressed by Eq. (25)

MJ\ + Mli
EEE——

M, ==

—M, (25)

Where M, is bending moment at the small end; M}
is bending moment at the big end.
By substituting Eq. (25) into Eq. (23), we get

_MH, (+ra/L)/2

I,(A+rx/L)" (26

O

do,
dx

the maximum bending stress. This location is the

When =0, we can find the position x of

most possible place for the formation of a plastic
hinge

_ L (7’171)MA14
V(?’I_Z) (7’1_2)(MA+M[>,)

4.4 Tapered Beam-Column

27)

X

For a rectangular tapered beam-column with
constant width and varying height subjected to
both bending moments and an axial force, when
the shear effect is neglected, taking the equilibrium
of moments can derive the governing differential e-
quation of this member for M,. The bending mo-
ment M, as shown in Fig. 7 at a distance of x from

one end is expressed in Eq. (28)

M +M,
L X

By substituting Eq. (29) into Eq. (28), we

M,=Py+M,— (28)

can get Eq. (30)

MI.=—EI,y"=—E11(1+r%)”y” (29)
E11<1+rj—’>'ly”+Py=wx—MA (30)

By defining Egs. (31)~(33), and substituting
them into Eq. (30), we can get Eq. (34)



%23

W. S. King,et al:Plastic Analysis of Frames with Tapered Members 15

Fig. 7 Tapered Member with Constant Width and Varying
Depth Subjected to Bending Moments and Axial Load

B7 ASSEMHBHENTSERBHEE
1 2
1+V%:5’ qg=EI, I’:—Z (31)
dy , rdy
2 0 i (32)
&y 3 dy 1
e (2(2 Jr() d() (33)
,,,,,@ Hdiy Py_
Q dgz+2(2 d.Q+ q
McEMy 1 My
qr 0 q

By multiplying 2" * on both sides of Eq. (34),
we get Eq. (35)

, d2y dy , Py _,
2 2 el n—22 J__An—2 ,
0 d(22+ (2 +Q p 0
EM“+M”<— My (35)
qr q

Solving Eq. (35) for y, we get Eq. (36) in the

form of Bessel function

—(1+rf)” {C T2

P X n2
?(lJrrf) E

(71—2)]+C2Y”l2[2 §(1+

My +My M,
PL P

By substituting boundary conditions y (0) =

(n—2) 1)+ (36)

y(L)=0 into Eq. (36), these constants C,,C, can
be determined. Therefore, we get Eq. (37)

—[—A<1+r> Yo (U>+ Yl (], (W)Y (497

[J L, (Y L (W)+] 2 a2 D=
Af,“] (V)+—<1+r> JL O L W) -
(407 [J_L WYL W+] L (W)Y L ()]}
My +M, M,
PL x I (37)
Where

U=2 §(1+r) 2y
V=2 2(71*2) by
q
w=2 /La+,5) -2
q L

The parameter r in Eq. (37) is equal to », for
an I-shape section. By substituting Eq. (37) into
Eq. (28), we can get the bending moment M, at a
distance x from the small end. When we substitute
the axial force P and the bending moment M, into
Eq. (38), we can have the bending stress ¢,. How-
ever, it is very difficult to differentiate Eq. (38) to
get the position of the maximum bending stress

M
O :A%+ S;

Where P is axial force; A, is cross-sectional area at

(38)

the distance x from the small end; M, is bending
moment at the distance x from the small end.
Hence, we do not differentiate Eq. (38) di-
rectly. We set ¢, =0, in Eq. (38) in order to ex-
press the yielding of a section. By dividing ¢, on
both sides of Eq. (38), we get the following equa-
tion
M,
PP +M.x

Where P, is squash load at a distance of x from

=1 3P

ya ya

the small end; M,, is initial yielding moment at a
distance of x from the small end.

Once a plastic hinge occurs at the nodal point
of an element, ten separately observational points
will be set up at equal distance along the element.
The axial load P and bending moment M, obtained
from Eq. (37) and Eq. (28) at each observational
point will be calculated and substituted into Eq.
(39). The summation of the axial load ratio and
moment ratio in Eq. (39) will be computed for each
observational point. In other words, the value of

Z; 1s calculated from Eq. (40)

_ P /M,
P, T M,,

The location of the largest value of Z; in these

(40)

ten observational points is the most possible place
where a plastic hinge may occur firstly. Hence, an

additional nodal point will be inserted at this place.
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If we calculate the value of Z, based upon the
following Eq. (41) that is respected to the limit

surface

_P M,
Zu= P, +M},‘,

We can also get the possible location of a plas-

41)

tic hinge that may form in an element. However,
it is more accurate when Z; is used in the prediction

of the possible location of a plastic hinge.

S Numerical Examples

The most possible location of a plastic hinge in
a tapered member by the proposed method is dem-
onstrated by several numerical examples in this
section. In every incremental load step, the limit
surface is used to check the internal nodal forces of
each nodal point. The incremental load applied on
the structure is scaled down when the plastic hinge
is going to form in a tapered member. Hence, we
can guarantee that when a plastic hinge just forms
in a tapered member, the applied incremental load
is not overloaded. Several load and deflection
curves of tapered members or frames with tapered
members are analyzed by the proposed method.
These plastic limit loads of frames with tapered
members are also discussed in these numerical ex-
amples. The lowest limit load of a frame with ta-
pered members can be found by setting a new nodal
point at the most possible position of a plastic
hinge.

5.1 Example 1

A tapered cantilever beam of rectangular sec-
tion with constant width is subject to a horizontal
load at the free end. The lateral load is increased
until the beam as shown in Fig. 8 is destroyed. The
most possible location of a plastic hinge in this
beam is detected by the proposed method. The re-
lation of load and deflection is analyzed by the sim-
ple plastic hinge method.

As shown in Fig. 8, curve (1) is the result by
taking only one element for the beam. According
to Eq. (27), the possible location of plastic hinge
detected by the proposed method is 127 ¢cm from

the fixed end. Curve (2) is the result when a new

2006 4
Cls
P — H, b=12.7cm
H=12.7cm
L=254 cm

E=20.683X10°kN * cm™*

Predicted position of plastic hinge

L

bl

Ten observational points are set

2
Limit surface: (L) + M, =1.0

Pyx Mpx
(a)Tapered Cantilever Beam with Rectangular Cross Section
5001
400
4
= 3001
R
el
S 200f
|
—e—One element for a beam [curve(1)]
100 - Two elements for a beam [curve(2)]
0 e Ten elements fv:)rI abeam [cu1‘ve(3)]I

2 4 6
Lateral Displacement at Top Joint/cm
(b)Load and Deflection of Tapered Cantilever Beam

Fig. 8 Load and Deflection of Tapered Cantilever Beam
with Rectangular Cross Section
B8 #AFMEHEFEERNTE-RE

nodal point is added at the most possible location
of a plastic hinge detected by the proposed meth-
od. Curve (3) is the result when the cantilever
beam is divided into ten equal elements. The limit
load that is predicted by curve (1) is higher than
that predicted by both curve (2) and curve (3). It
implies that limit load of a tapered beam is overes-
timated about 13% when only one element is used
in analysis. Limit loads predicted by curve (2) and
curve (3) are the same. However, in curve (2) only
two elements are used by the proposed method.
5.2 Example 2

An I-shape beam-column with constant width
and varying depth is shown in Fig. 9. The column
height L is 352. 55 cm. The depth of the small end
H, is 15. 24 cm. The big end’s depth H, is 106. 68
cm. The flange width b; is 20.32 cm. The web
thickness ¢,, is 0. 72 cm. The flange thickness ¢; is
1.1 em. The elastic modulus E is 206 84 kN -
cm *. The yielding stress g, is 24.8 kN « cm 7,
The vertical load P of 889. 6 kN is applied first and
kept constant. The axial load P divided by the
squash load P, of the small end is 0. 66. The axial
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load P divided by the squash load P, of the big end
is 0. 3. The lateral load H is applied and increased

till the member collapses.

-~—(1)y=317.3cm
-—(2)y=282.0cm
<—(3)y=246.8 cm
~—(4)y=211.5cm

Fig. 9 Tapered Beam-Column of I-Section
B9 IREEEERHE

In this example, we try to find the correct
load and deflection relation curve by using the fe-
wer elements. One element is taken for the beam-
column at first. A plastic hinge will be formed at
the fixed end after analysis. Hence, one element
that includes ten observational points is used for
the beam-column analysis. These first four obser-
vational points are shown in Fig. 9. The value of Z,
in Eq. (40) is calculated for each observational
point. The largest value of Z; of these observation-
al points represents the most possible location of a
plastic hinge. Point (2) is at the predicted location
of a plastic hinge. Hence, two elements are used
for the beam-column analysis after a new nodal
point is added at point (2).

In Fig. 10, curve (a) is the result by using on-
ly one element for this member. Curve (b) is the
result by using two elements for this member with
a new nodal point at point (1). Curve (¢) is the re-
sult by using two elements for this member with a
new nodal point at point (2). Curve (d) is the re-
sult by using two elements for this member with a
new nodal point at point (3). Curve (e) is the re-
sult by using two elements for this member with a
new nodal point at point (4).

The value of Z; at point (2) in curve (c) is
1.134. The value of Z; at point (1) in curve (b) is
1.113. The value of Z; at point (3) in curve (d) is
1.072. The value of Z; at point (4) in curve (e) is
0.994. The value of Z; in curve (¢) is the largest

2501
2 +(a)
g 00 A
3 150 i
s B == ii----.l.
Tl (b)
S 100 ) —C
= r (S
g @
S s0r
1 1 1 1 1
0 2 4 6 8 10

Lateral Displacement at Top Joint/cm
-4 One element for a member;
-« Two elements for a member, adding a nodal point at point(1);
—+— Two elements for a member, adding a nodal point at point(2);
—— Two elements for a member, adding a nodal point at point(3);
—m - Two elements for a member, adding a nodal point at point(4)

Fig. 10 Load and Deflection of Tapered I-Section
Beam-Column
B 10 ITRE&EEEEENTE-RE

one among curves (a) through (e). The limit load
of curve (d) is the lowest one. However, the limit
load of curve (¢) is very close to that of curve (d).

The limit load of curve (d) is only 1% lower
than that of curve (¢) as shown in Fig. 10. The ac-
tual location of a plastic hinge may be very close to
point (2). This example demonstrates that the
proposed method can predict for the most possible
location of a plastic hinge in a tapered member.
After the nodal point (2) is added into the tapered
member, the limit load of the beam-column re-
duces 39% as compared to that by using only one
element for a member. It is seen that the limit load
of a tapered beam-column is always overestimated
if the possible location of a plastic hinge is not
found correctly.
5.3 Example 3

A portal frame as shown in Fig. 11 composes
two tapered columns and one uniform beam. These
columns have a constant width but a linearly taper-
ed depth. All members have I-shape sections. The
bottom of column is hinged. The span L of each
member is 355. 6 cm. The web thickness ¢, of an I-
shape section is 0. 72 cm. The flange thickness #; of
an I-shape section is 1. 1 cm. The flange width &; of
an I-shape section of beam and columns is 30. 48
cm. The depth H, or H, of the uniform beam is
the same of 76.2 cm. The depth H, of the small
end of the tapered column is 15. 24 cm. The depth
H; of the big end of the tapered column is 91. 44
em. Young’s modulus E is 20 684 kN « em™?. The
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yielding stress o, is 24.8 kN « cm™?%,

The plastic
hinge is not permitted to occur in this beam on pur-
pose when the size of beam is selected. The verti-
cal load P is 889.6 kN. The value of P is equal to
0. 66 P, at the small end of column; while the value
of P is equal to 0. 33P, at the big end of column.
These vertical loads P are applied first and kept
constant. Then, the horizontal load H is applied

and increased from zero to the limit load till the

portal frame is going to collapse.

P L P
H @ |
@ 3

~ — —
(3)x=355.6 cm, y=35.6 cm
(2)x=355.6 cm, y=71.1 cm
(1)x=355.6 cm, y=106.7 cm

4

Fig. 11 Portal Frame Dimensions and Three
Observational Points
11 [TXERR
If one element is taken for each member, there
are four nodal points. After an initial analysis, a
plastic hinge is formed firstly at the nodal point
(3) in the third element. Therefore, ten observa-
tional points are set in the third element in order to
compute Z, and Z;. Because Z, and Z; become
small after the fourth observational point, these
first three values of Z, and Z; are shown in Fig. 12

respectively.
400

300

2001

Lateral Load H/kN

100

0 1 2 3

Lateral Displacement at Top Left Joint/cm

—— One element for member No.3 [curve(a)];

- 4. Two elements for member No.3, adding a nodal point at point(1),
Z=1.1,Z=1.2 [curve(b)];

--m- Two elements for member No.3, adding a nodal point at point(2),
Z,=1.09,Z=1.216 [curve(c)];

—%=- Two elements for member No.3, adding a nodal point at point(3);
Z,=1.03,Z=1.162 [curve(d)]

Fig. 12 Load and Deflection of Portal Frame
B12 MNMAERMETH-IFRE
It is found that the largest value of Z, is at the

second observational point. It means that a possi-

ble plastic hinge will be formed at the second ob-
servational point. Hence, a new nodal point is
added at the second observational point. Now,
there are five nodal points and four elements for
the portal frame analysis. The load and deflection
curve (¢) is the result of analysis when a new nodal
point is added at the second observational point.
The limit load of curve (c) is the lowest one of
several analyses.

The largest value of Z, is at point (1) that is
corresponding to curve (b). However, the limit
load of curve (b) is not the lowest one. Therefore,
the checking criteria by using Z; are better than
that by using Z,. The limit load of curve (a) is
higher than that of curve (¢) about 49%. This re-
sult represents the proposed method is acceptable
and reasonable. The actual location of plastic hinge

is very close to the second observational point.

6 Conclusions

(1) The stiffness matrixes of three rectangular
sections successfully superpose the stiffness matrix
of a tapered member of I-shape section in this pa-
per. It is shown that the stiffness matrix of a ta-
pered member of I-shape section is reasonable and
correct by that process of superposition.

(2)In order to find a possible location of plas-
tic hinge in a tapered member, the checking criteria
by using Z; are better than that by using Z,. Z; is
calculated by using the left side of the equation of
the initial yielding surface. Z, is calculated by u-
sing the left side of the equation of the limit sur-
face.

(3) The plastic limit load is overestimated if
only one element is used for a tapered member.
The proposed method to predict the approximate
position of a plastic hinge in a tapered member is
effective and accurate. When the possible location
of a plastic hinge in a tapered member is found, a
new nodal point at that location can be set. The fe-
wer elements can be used to reasonably predict be-
havior for structures with tapered members.

(4)For the examples studied in this paper, the

error of limit load for a beam-column may be up to



%23

W. S. King,et al:Plastic Analysis of Frames with Tapered Members

19

49%. These errors of limit loads of beam-columns

are more serious than that of beams, if these pre-

dicting locations of plastic hinges in tapered mem-

bers are incorrect.
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